
Empirical Project Monitor: Automatic

Data Collection and Analysis toward

Software Process Improvement

Masao Ohira Reishi Yokomori Makoto Sakai

Ken-ichi Matsumoto Katsuro Inoue Koji Torii

In recent years, improvement of software process

is increasingly gaining attention. However, its prac-

tice is very difficult because coherent data collec-

tion and utilization of the collected data require

considerable experience with software process im-

provement. In this paper, we describe our empiri-

cal approach to software engineering and introduce

Empirical Project Monitor (EPM). Collecting data

on development activities from common software

development support tools such as configuration

management systems and mailing list managers,

EPM analyzes the stored data automatically and

provides graphical results. EPM facilitates coher-

ent data collection and data analysis which are dif-

ficult tasks in practice.

1 Introduction

In software development in recent years, improve-

ment of software process is increasingly gaining at-

tention. Its practice in software organizations con-

sists of repeatedly measuring the development ac-

Masao Ohira, Ken-ichi Matsumoto, Koji Torii, Nara

Institute of Science and Technology

Reishi Yokomori, Katsuro Inoue, Osaka University

Makoto Sakai, SRA Key Technology Laboratory, Inc.

tivities, finding potential problems in the processes,

assessing improvement plans, and providing feed-

back into the processes [1].

Many software measurement methods have been

proposed to better understand, monitor, control,

and predict processes and products. However, they

cannot be used effectively to improve processes un-

less people have extensive experience with software

measurement because it is difficult

• to specify an explicit goal for improvement,

• to prepare necessary software or metrics for

measurement,

• to bring measurement results into further pro-

cess improvement, and so on.

Moreover, since consecutive practices of collecting

data often canceled by replacement of a manager or

developer, sufficient experience with measurement

is not easy to be accumulated in organizations.

As an approach to deal with the issues above, the

Goal-Question-Metric (GQM) paradigm [2] [3] [4] [5]

provides a sophisticated measurement technique.

GQM guides to set up measurement goals, create

questions based on these goals, and determine mea-

surement models and procedures based on these

questions. The improvement of software process

based on GQM is a logical and reasonable method.

However, in its practice, it is necessary for all mem-

bers to strive about all measurement processes on

every last detail, so honest efforts and high costs

are needed.

In summary, as practical issues, measurement ef-

forts do not succeed in improving software process

effectively, because

(1) little measurement experience and

(2) the burden of strict measurement

result in giving up continuous, coherent measure-

ment activities in many cases.

We have been studying empirical software engi-

neering [6] [7] [8] as a measurement-based approach

to these problems. Empirical software engineer-

ing is a method of evaluating various technologies

and tools based on the quantitative data obtained

through actual use. In our study, we are trying to

develop a variety of support tools called Empirical

software Engineering Environment (ESEE), which

helps developers/managers/organizations improve

software processes. Recently we have developed

Empirical Project Monitor (EPM) as a partial im-

plementation of ESEE.

EPM automatically collects development data

from common development support systems, which

are often used in recent open source software de-

velopment, such as CVS†1 and Mailman†2. EPM

also analyzes the collected data and provides users

with graphical results. Using EPM, users can ob-

tain objective data at low cost and keep current

development status under control. Moreover, since

EPM helps developers/managers share the results

through using a web browser, it is easy to construct

a shared environment for discussing on the collected

†1 CVS, Concurrent Version System,

http://www.cvshome.org/

†2 Mailman, the GNU Mailing List Manager,

http://www.list.org/

data and the analyzed results.

Section 2 describes our approach to tackle is-

sues on software process improvement and Empiri-

cal Software Engineering Environment (ESEE). We

introduce Empirical Project Monitor (EPM), which

has been developed as a partial implementation of

ESEE, in Section 3. Section 4 illustrates some of

the advantages of using EPM. Section 5 summa-

rizes this paper and future work.

2 Empirical Software Engineering En-

vironment (ESEE)

We describe here that our approach to deal-

ing with the issues mentioned the previous sec-

tion. First, Section 2.1 introduces the general cyclic

model for software process improvement, which is

fundamental concept in our empirical approach to

software engineering. Section 2.2 describes our

policies to constract a computational environment

that supports to practice the continuous, cyclic pro-

cess in software development organizations. Sec-

tion 2.3 is the architecture of Empirical Software

Engineering Environment (ESEE) which provides

a combination of computational support tools for

coherent deta collection and analysis.

2.1 The Cyclic Process for Improvement

Many models related to software process im-

provement have been proposed (e.g. CMM [9],

CMMI [10], IDEAL MODEL [11], etc.). These mod-

els have common characteristics which provide a se-

ries of guidelines in order to raise productivity and

reliability of software through continual, gradual

improvement. It is essential to understand (assess)

current status and problems properly as a starting

point for applying the models in practice.

Instead of trying to develop “another CMM”, our

approach is to provide a computational environ-

ment for supporting quantitative data-based mea-

surement, which can complement to practice ex-

DataCollection
DataAnalysis Feedback forImprovement

Figure 1 Basic model for improvement

isting models such as CMM. Figure 1 is roughly

sketched our model for process improvement as fol-

lows:

1. massive data collection from software devel-

opment activities

2. Intensive data analysis

3. Feedback for software process improvement

Our model doses not suppose rigid procedures

such as other models but flexible improvement pro-

cesses according to respective problems in software

development projects and organizations. To pro-

vide a computational environment to support such

flexible improvement, we think that it is impor-

tant to be able to (1) measure (assess) software

process objectively based on coherent quantitative

data without heavily depending on individual ex-

perience, and (2) keep on conducting measurement

activities without additional work and costs. These

are also challenges to the two issues mentioned in

Section 1.

2.2 Policies for Designing ESEE

Though we do not specify procedures for im-

provement activities, we are trying to design a

computational support environment for quantita-

tive data collection and analysis, according to the

three policies as follows.

Policy for Data Collection: As we mentioned

in Section 2.1, our approach does not intend to col-

lect data after specifying a clear-cut goal for im-

provement or analysis. Our approach gives prior-

ity to collect as much data as possible coherently

without disturbing ordinary development activities.

Similar approaches [12] [13] have proposed to ana-

lyze histories of software changes by using rapidly

growing hardware capabilities.

• Not goal first (ideal cases) but data collection

first (realistic approach) because it is difficult

to determine a goal for improvement at first in

practice

• Collect mainly product data (process data is

obtained from the product data) in order to

minimize developers/managers’ overhead for

collection

• Collect raw data without human tampering in

order to prevent involving subjective data such

as human-handed documents

• Real-time data collection in order to keep de-

velopment activities under control

• Make applicable to various projects (e.g. small

scale projects, non-water fall process projects

such as XP, distributed development projects

including sub-contracting, etc.) by collecting

data from widely used development support

systems such as configuration management sys-

tems and mailing list managers.

Policy for Data Analysis: Our main target

in supporting process improvement is thousands of

projects and organizations that must manage many

projects, rather than a single project or individ-

ual developers/managers. Although there are many

studies on development support in a small or mid-

dle scale, few have been proposed to support soft-

ware development projects and organizations in a

large scale. Since there is few technology and tech-

nique for analyzing such large-scale software devel-

opment data, we are doing stepwise implementation

such as Table 1.

Section 3 introduces Empirical Project Monitor

(EPM) which supports 1 in Table 1 (, and 2 in the

Table 1 Analysis policy for stepwise implementation

Priority Technologies to analyze large-scale development data

1 Process/product metrics inside a single project (easy, simple)

2 Inter-project metrics

3 Classification and evolution

4 Reuse components/expertise

5 Deeper analysis (difficult, complex)

near future).

Policy for Improvement: We would like to

provide flexible feedback methods for each objec-

tive in projects and organizations. Currently we

are evaluating existing technologies and inventing

a mechanism in order to deal with various cases.

We have been designing Empirical Software Engi-

neering Environment (ESEE) while incorporating

such a flexible mechanism in ESEE. Section 2.3 de-

scribes the architecture of ESEE.

2.3 The Architecture of ESEE

Empirical Software Engineering Environment

(ESEE) is not a single huge system that supports all

the steps as in Figure 1 but a flexible system with

various pluggable tools, which can be replaced ac-

cording to objectives of improvement and methods

of data analysis in organizations.

The fundamental functions of ESEE are:

• to collect a large amount of data from thou-

sands of software projects and

• to make such the huge data available to ana-

lyze for improving processes and increasing or-

ganizational benefit.

Figure 2 shows the system architecture of ESEE.

ESEE mainly consists of the four parts (data collec-

tion, format translation, data store, and data anal-

ysis/visualization). In what follows, we describe

these parts briefly.

Data collection: In the data collection part,

data from thousands of software projects is auto-

matically gathered through common software de-

velopment support tools such as configuration man-

agement systems and mailing list managers. For

instance, the data from a configuration manage-

ment system contains information relevant to soft-

ware development activities (e.g. “who/when/how

changed the source code,” “how many times the

source code was changed,” and so on). Data collec-

tion from widely used development support systems

prevents developers and managers from increasing

additional work for measurement.

Format translation: In the format translation

part, the collected data are classified into product

data in the CVS format and into process data in the

XML format which we call the standardized empir-

ical software engineering data format. According

to the data collection policy, ESEE collects three

kinds of data from configuration management sys-

tems, mailing list managers, and bug reports man-

agement systems. Various kinds of data form other

systems are also available according to the purposes

of data analysis if the data are transformed into the

XML format.

Data store: The data is stored in two Post-

greSQL†3 databases. One is for the product data

which is necessary to analyze source codes such as

code clone detection [14]. Another is for the process

data to analyze development activities.

Data analysis/visualization: We have plans

to provide a variety of analysis/visualization tools,

†3 PostgreSQL, the worlds most advanced Open

Source database software,

http://www.postgresql.org/

………Project ZProject Y

Code clonedetection Componentsearch Cooperativefiltering Projectcategorization MetricsmeasurementData Analysis/Visualization
Data Store(PostgreSQL) Product data archive(CVS format) Process data archive(XML format)

Format Translation
Data Collection(Project X) Configurationmanagementdata(e.g. CVS) Mailing list managementdata(e.g. Mailman) Issuetruckingdata(e.g. GNUTS) Other tool data

Various analysis tools

Common development support systems(e.g. CVS, Mailman, GNUTS, etc.) and GUI tools (e.g. WinCVS, SourceShareTM, etc.)
developer manager

results through a web browser

Components of EPM

Figure 2 Empirical Software Engineering Environment (ESEE) and

Empirical Project Monitor (EPM)

which help managers and developers detect code

clone, search software components [15], find simi-

lar projects by cooperative filtering [16], categorize

projects [17] and so on. EPM introduced in Section

3 measures basic metrics using the data stored in

three development support systems and provides

users with graphical results.

In this way, ESEE provides a mechanism in order

to collects massive data from thousands of projects

automatically and to provide developers and man-

agers with the analysis results. The pluggable

mechanism makes ESEE flexible to extend further

functions according to purposes for improvement in

organizations. This feature of ESEE would be im-

portant to support various projects and organiza-

tions because purposes of data collection/analysis

for improvement differ among projects and organi-

zations. We would like to provide such the frame-

work rather than provide a “tailored” integral sys-

tem at first.

3 Empirical Project Monitor (EPM)

We have developed Empirical Project Monitor

(EPM) as a partial implementation of ESEE. EPM

is an automatic data collection and analysis sys-

tem in order to support software process improve-

ment. Automatically collecting data on develop-

ment activities from common development support

systems, EPM analyzes the stored data and pro-

vides users with graphical results. EPM assists

coherent quantitative data collection and facilitate

data analysis, which both are difficult tasks in prac-

tice.

3.1 Overview of EPM

EPM consists of basic components in ESEE (the

grayed components in Figure 2). EPM collects the

data from widely used development support sys-

tems as follows:

• configuration management systems

• mailing list managers

• bug (issue) tracking systems

Currently EPM can deal with the data from

CVS (configuration management system), Mail-

man/Majordomo†4/fml†5 (mailing list managers),

and GNATS†6/Bugzilla†7 (bug tracking systems).

The data from other systems are also available by

small adjustments if the parameters are converted

into the XML format.

These data are collected automatically through

using common GUIs (e.g. SourceShare†8,
WinCVS†9, etc.), which are also used for support-

ing software development projects in recent years.

Developers and managers do not need additional

work for data collection.

EPM analyzes the process data transformed in

the XML format in the PostgreSQL database, pro-

vides users (developers and managers) with various

visualizations of the data. Because EPM can collect

and analyze the data in real-time, EPM help users

understand current states of their projects and keep

their projects under control.

For example, from a CVS repository, the for-

mat translator extracts process data about events

such as modification, checkout, check-in, and so on

and translates the data in the XML format. At

the same time, the translator produces the XML

data about transition of sizes, update times and

versions for each stored component in the reposi-

tory. The translator also extracts reports such as

†4 Majordomo, mailing list management packages,

http://www.greatcircle.com/majordomo/

†5 fml, Mailing List Server Package,

http://www.fml.org/index.html.en

†6 GNATS, GNU Bug Tracking System,

http://www.gnu.org/software/gnats/

†7 Bugzilla, Bug Tracking System,

http://www.bugzilla.org/

†8 SourceShare, Novel Electronic Software Publish-

ing environment,

http://www.zeesource.net/

†9 WinCVS, Windows GUI front-end for CVS,

http://wincvs.org/

bug-detection reports and bug-fix reports in a bug

tracking system. Moreover, the format translator

acquires information such as posted time of each

mail, subjects, senders, and so on from header in-

formation stored in a mailing list archive.

The results of the data analysis are available to

see through using a common web browser, so that

EPM assists users in sharing the results. The easi-

ness of sharing the analysis results would help users

discuss on the results and plan further improvement

points.

In this way, EPM supports users to obtain objec-

tive data at low cost and to keep current develop-

ment status under control.

3.2 Visualization Results of EPM

EPM measures the collected data using metrics

as follows:

• LOC (lines of code)

• Number of check-ins/checkouts

• Number of mails

• Number of bugs (issue reports)

• Development activity, and so on.

Analyzing the collected data using such metrics,

EPM provides five kinds of visualizations currently.

Growth of LOC: For instance, Figure 3 shows

the change of cumulative total of source codes in

our own project (EASE project [18]). The verti-

cal lines represent when developers “checked-in”

the CVS repository. It means that developers

changed (added/modified/deleted) a source code in

the repository. The graph helps users understand

the current progress of the project and estimate the

future status by comparing to past similar projects.

Use of CVS by developers: Figure 4 rep-

resents the relationship between time of check-ins

(vertical longer grayed lines) and number of check-

outs. When a check-in occurs, other developers

usually check out the CVS repository in order to

update their local files. Fewer checkouts often mean

Figure 3 Growth of LOC

Figure 4 History of the CVS repository

that the files updated into the CVS repository are

not important for other developers or others may

not know the check-in occurred. The graph tells

users whether developers refer to the CVS reposi-

tory after check-ins or whether there exists a check-

in which should be informed to others.

Communication among developers: Fig-

ure 5 illustrates the change of cumulative to-

tal of e-mails (the line graph), time of issues

raised/resolved (the vertical shorter/longer dashed

lines), and time of check-ins occurred (the vertical

light-gray line). From this graph, users can know

an overview of communications among them, since

communications usually become active to discuss

on the bugs when bug issues are reported to a bug

tracking system. If many bugs are reported but

developers do not discuss on the bugs, communica-

tions among developers may have problems. Com-

Figure 5 History of communications among

developers

Figure 6 Relationship between issue reports

and check-in

munication problems among developers almost al-

ways bring the decrease of software productivity

and reliability [19] [20].

Bug issues and developers’ activity: Figure

6 shows the relationship between the change of cu-

mulative total of issues (the line graph) and time

of check-ins (the grayed vertical line). Check-ins

often occurs when issues are raised because devel-

opers try to modify the bugs. The graph helps users

confirm the situation of issues per every version.

Unsolved bug issues in a project: Figure 7

represents the relationship among the change of cu-

mulative total of issues (the upper line), the change

of number of unsolved issues (the lower line), and

change of mean time until issues are resolved (the

middle line). This graph is useful for managers to

Figure 7 Unsolved issues in a project

know how long time it takes to resolve one issue

at present. This also might help developers give

motivations for trying to decrease bugs.

In this way, EPM visualizes useful information

for understanding the current status of project and

keeping projects under control. The current imple-

mentation of EPM only provides above five kinds

of graphs in different scales (day/month/year). In

the near future, we will implement the function to

visualize multi-projects data based on the analysis

policy 2 in Table 1. We will also provide users with

the customizability for directly operating the Post-

greSQL in order to support user’s purposes for data

analysis.

4 Scenario of EPM

We illustrate some of the advantages of EPM us-

ing scenarios. The followings are often mentioned

as problems in practical software development.

• increase of developers/managers’ burden when

collecting data for process improvement

• delay of information exchanges related to

projects’ progress

• arbitrary human-hand operations to data

First one is an obvious problem because devel-

opers/managers are often required to do additional

work such as progress reports and product reports,

once starting to collect the data to measure the pro-

ductivity, the reliability, and so on. It also means

that the measurement takes high costs. Even if us-

ing automatic monitoring tools for measuring de-

velopers・activities, there still exist costs (e.g. All

developers have to install the tools into all machines

which are used for development and so on).

EPM automatically collects/analyzes the raw

product data generated from existing popular tools

in software development (the process data is cal-

culated from the product data). In many cases, it

is sufficient for EPM to be installed into a normal

computer per an organization, without other addi-

tional tools and work. If one software project does

not use CVS, it takes less cost to introduce CVS

into the project because CVS is free, open source

software. That is the reason why we decide to ex-

ploit the data from open source software such as

CVS and Mailman, considering the easiness for the

introduction of software tools.

Second one is a problem related to communica-

tions. Less communication among developers al-

most always causes low productivity [20]. In partic-

ular, this is critical for multi-site distributed soft-

ware development in recent years because develop-

ers have little chance for face-to-face communica-

tions. We have been already using e-mails to ex-

change information with others. However, develop-

ers in geographically distributed environments are

hard to acquire right information at right time from

appropriate persons [19].

One of the characteristics of EPM is to collect

data in real-time. This is useful to understand the

development status at present. Especially as we

introduced using Figure 5, the graph which rep-

resents history of communication are available as

a kind of “alerts”. Users (developers/managers)

can confirm whether developers communicated suf-

ficiently when issues occurred. If developers do not

communicate (discuss) with each other in spite of

issues rising, it might indicates the shortage of com-

munications in the project.

Final is one of problems of the document (prod-

uct) based project management. The quality of

documents by human-hand generally has no con-

sistency. It often depends on individuals and their

arbitrary interpretations, so that a new person from

different culture may change the whole quality of

documents in a project differently. This often hap-

pens when one developer/manager retires from the

project. Therefore, this makes reuse of their previ-

ous experience difficult.

Using EPM, such the arbitrary operations cannot

be possible basically because EPM deals with the

raw process data extracted from the product data,

which is generated in ordinary development activi-

ties. This feature would lead continuous, coherent

process improvement activities.

5 Summary and Future Work

In this paper, we introduced our empirical ap-

proach to software engineering for process improve-

ment. Empirical Software Engineering Environ-

ment (ESEE) gives a computational framework for

quantitative measurement.

Our goal of this study is to construct the method-

ology for supporting measurement based software

development. Nowadays, we can gather and an-

alyze massive data on software development in a

large scale using rapidly growing hardware capabil-

ities. By analyzing the huge data collected from

thousands of software development projects, we

would like to provide useful knowledge and bene-

fit not only to individual developers/managers but

also to organizations.

Although we much need to understand “what

kinds of technologies/feedback are effective to in-

crease organizational benefit,” we believe that

ESEE could strongly complement existing tech-

niques such as GQM, because the problems found

from quantitative coherent data can be used as the

evidence in order to determine the goal of the im-

provement.

We also introduce Empirical Project Monitor

(EPM) as a partial implementation of ESEE, which

supports developers/managers keep projects under

control by providing various visualization results

related to project activities. We are implementing

further functions to help users customize visualiza-

tions freely. In particular, the function to visualize

multi-project data according to our analysis policy,

represented by 2 in Table 1, will be available soon.

We also have plans to apply EPM to practical soft-

ware development projects in companies.

Empirical study on software development is an

active area in the field of Empirical Software En-

gineering (ESE). But the approaches of ESE have

not been sufficiently applied to software develop-

ment in software industry in spite of holding many

problems. We are trying to identify the factors from

an organizational point of view.

We are collaborating with some software devel-

opment companies. The data about software devel-

opment from the industrial world has seldom been

provided with university’s research. Therefore, it

would be a strong trigger for going beyond inhibi-

tion of the technical progress of software engineer-

ing. By empirical approach, we expect to break

down the wall of inhibition and to advance research

toward problem-solving.

Acknowledgment

This work is supported by the Comprehensive

Development of e-Society Foundation Software pro-

gram of the Ministry of Education, Culture, Sports,

Science and Technology.

We thank Satoru Iwamura, Eiji Ono and Taira

Shinkai for supporting development of Empirical

Software Engineering Environment and Empirical

Project Monitor.

Reference

[1] L. Briand, C. Differding, and D. Rombach,

Practical guidelines for measurement-based pro-

cess improvement, Technical Report ISERN–96–

05, Department of Computer Science, University of

Kaiserslautern, Germany, 1996.

[2] V. Basili and D. Weiss, A methodology for

collecting valid Software Engineering Data, IEEE

Transactions on Software Engineering, Vol.10, No.6,

pp.728–738, 1984.

[3] V. Basili and H. D. Rombach, The TAME

Project: Towards Improvement–Oriented Software

Environments, IEEE Transactions on Software En-

gineering, Vol.14 No.6, pp.758–773, 1988.

[4] H. D. Rombach, Practical Benefits of Goal–

Oriented Measurement, In N. fenton and B. Little-

wood, editors, Software Reliability and Metrics, pp.

217–235, Elsevier Applied Science, London, 1991.

[5] V. Basili, Applying the Goal/Question/Metric

Paradigm in the Experience Factory, Presented at

the 10th Annual CSR Workshop in Amsterdam,

1993.

[6] A. Aurum, R. Jeffery, C. Wohlin, and M.

Handzic, Managing Software Engineering Knowl-

edge, Springer, Germany, 2003.

[7] V. Basili, The Experimental Software Engineer-

ing Group: A Perspective, ICSE’00 award presen-

tation, Limerick, Ireland, June 5–10, 2000.

[8] M. Lindvall, V. Basili, B. Boehm, P. Costa, and

K. Dangle, F. Shull, R. Tesoriero, L. Williams, and

M. Zelkowitz, Empirical Findings in Agile Methods,

Proceedings of XP/Agile Universe 2002, pp.197–

207, 2002.

[9] M. C. Paulk, B. Curtis, M. B. Chrissis and C.

V. Weber, Capability Maturity Model Version 1.1,

IEEE Software, Vol.10, No.4, pp.18–27, 1993.

[10] CMMI Product Team, Capability Maturity

Model Integration (CMMI) Version 1.1 CMMI

for Systems Engineering and Software Engineer-

ing (CMMI–SE/SW, v1.1), Continuous Represen-

tation, CMU/SEI–2002–TR–001, ESC–TR–2002–

001, 2001.

[11] J. Gremba and C. Myers, The IDEAL Model:

A Practical Guide for Improvement, appeared in

the Software Engineering Institute (SEI) publica-

tion, Bridge, issue 3, 1997.

[12] D. Draheim and L. Pekacki, Process-Centric An-

alytical Processing of Version Control Data, Inter-

national Workshop on Principles of Software Evo-

lution (IWPSE’02), pp.131–136, Helsinki, Finland,

2003.

[13] A. Mockus and L. G. Votta, Identifying Reasons

for Software Changes Using Historic Database, Pro-

ceedings of 2000 International Conference on Soft-

ware Maintenance (ICSM’00) pp.120–130, San Jose,

CA, 2000.

[14] T. Kamiya, S. Kusumoto, and K. Inoue,

CCFinder: A Multi-Linguistic Token-based Code
Clone Detection System for Large Scale Source

Code, IEEE Transactions on Software Engineering,

Vol.28, No.7, pp. 654–670, 2002.

[15] R. Yokomori, T. Ishio, T. Yamamoto, M.

Matsushita, S. Kusumoto, and K. Inoue, Java

Program Analysis Projects in Osaka University:

Aspect-Based Slicing System ADAS and Ranked-

Component Search System SPARS-J, Proceedings

of the 25th International Conference on Software

Engineering (ICSE’03), pp.828–829, Portland, Ore-

gon, 2003.

[16] N. Ohsugi, A. Monden, and S. Morisaki, Col-

laborative Filtering Approach for Software Function

Discovery, Proceedings of 2002 International Sym-

posium on Empirical Software Engineering (ISESE

2002), Vol.2, pp.45–46, Nara, Japan, 2002.

[17] S. Kawaguchi, P. K. Garg, M. Matsushita and

K. Inoue, Automatic Categorization for Evolvable

Software Archive, International Workshop on Prin-

ciples of Software Evolution (IWPSE’03), pp.195–

200, Helsinki, Finland, 2003.

[18] EASE (Empirical Approach to Software En-

gineering) project, http://www.empirical.jp/index-

e.html

[19] J. D. Herbsleb, A. Mockus, T. A. Finholt and

R. E. Grinter, An Empirical Study of Global Soft-

ware Development: Distance and Speed, Proceed-

ings of the 23rd international conference on Software

engineering (ICSE’01), pp.81–90, Toronto, Canada,

2001.

[20] A. H. Dutoit and B. Bruegge, Communication

Metrics for Software Development, IEEE Trans-

actions on Software Engineering, Vol.24, No.8,

pp.615–628, 1998.

