
Empirical Project Monitor: A Tool for Mining Multiple Project Data

Masao Ohira†, Reishi Yokomori‡, Makoto Sakai††,
Ken-ichi Matsumoto†, Katsuro Inoue‡, Koji Torii †

† Nara Institute of Science and Technology
ohira@empirical.jp,{matumoto, torii}@is.aist-nara.ac.jp

‡ Graduate School of Information Science and Technology, Osaka University
{yokomori, inoue}@ist.osaka-u.ac.jp

†† SRA Key Technology Laboratory, Inc.
sakai@sra.co.jp

Abstract

Project management for effective software process im-
provement must be achieved based on quantitative data.
However, because data collection for measurement requires
high costs and collaboration with developers, it is difficult
to collect coherent, quantitative data continuously and to
utilize the data for practicing software process improve-
ment. In this paper, we describe Empirical Project Moni-
tor (EPM) which automatically collects and measures data
from three kinds of repositories in widely used software
development support systems such as configuration man-
agement systems, mailing list managers and issue tracking
systems. Providing integrated measurement results graphi-
cally, EPM helps developers/managers keep projects under
control in real time.

1 Introduction

In software development in recent years, improvement of
software process is increasingly gaining attention. Its prac-
tice in software organizations consists of repeatedly mea-
suring the development activities, finding potential prob-
lems in the processes, assessing improvement plans, and
providing feedback into the processes. Project manage-
ment for effective software process improvement must be
achieved based on quantitative data.

Many software measurement methods have been pro-
posed to better understand, monitor, control, and predict
software processes and products [4]. For instance, the Goal-
Question-Metric (GQM) paradigm [2] provides a sophisti-
cated measurement technique. GQM guides to set up mea-
surement goals, create questions based on the goals, and de-
termine measurement models and procedures based on the

questions. The measurement based on GQM is a logical and
reasonable method.

However, in its practice, members who participate in
measurement activities need to strive for the measurement
processes on every last detail. Data collection for measure-
ment in general requires high costs and collaboration with
developers. It is difficult to collect coherent, quantitative
data continuously and moreover to utilize the collected data
for practicing software process improvement. Few studies
have proposed measurement tools for dealing with a number
of project data especially in terms of a large-scale software
organization.

As a measurement-based approach to the above is-
sues, we have been studying empirical software engineer-
ing [1, 3] which evaluates various technologies and tools
based on quantitative data obtained through actual use. Our
goal is to develop an environment composed of a variety of
tools for supporting measurement based software process
improvement, which we call Empirical software Engineer-
ing Environment (ESEE).

In this paper, we introduce Empirical Project Monitor
(EPM) as a partial implementation of ESEE, which au-
tomatically collects and measures quantitative data from
three kinds of repositories in widely used software devel-
opment support systems such as configuration management
systems, mailing list managers and issue tracking systems.
Collecting such the data in software development automat-
ically and providing integrated measurement results graph-
ically, EPM helps developers/managers keep their projects
under control in real time.

2 Empirical Project Monitor (EPM)

We have developed Empirical Project Monitor (EPM) [9]
which automatically collects and analyzes data from multi-

………Project ZProject Y

Code clonedetection Componentsearch Cooperativefiltering Projectcategorization MetricsmeasurementData Analysis/Visualization
Data Store Product data archive(CVS format) Process data archive(postgreSQL)

Format Translation
Data Collection(Project X) Configurationmanagementdata(e.g. CVS) Mailing list managementdata(e.g. Mailman) Issuetruckingdata(e.g. GNUTS) Other tool data

Various analysis tools

Widely used OSS development support systems (e.g. CVS, Mailman, GNUTS, etc.) and GUI tools (e.g. WinCVS, SourceShareTM, etc.)
developer manager

results through web browsers

Components of EPM

Figure 1. The architecture of EPM in the ESEE framework

ple software repositories. Figure 1 shows the architecture of
EPM in the ESEE framework. The ESEE framework is de-
signed for supporting measurement based process improve-
ment in software organizations by providing various plug-
gable tools. EPM consists of four components according
to the ESEE framework: data collection, format translation,
data store, and data analysis/visualization. This section de-
scribes an overview of EPM and the basic data flow through
EPM.

Automatic data collection: EPM automatically collects
multiple project data from three kinds of repositories in
widely used software development support systems. For
instance, EPM collects versioning histories from configura-
tion management systems (e.g. CVS1), mail archives from
mailing list managers (e.g. Mailman2, Majordomo3, fml4),
and issue tracking records from (bug) issue tracking sys-
tems (e.g. GNATS5, Bugzilla6). Because these data are
accumulated through everyday development activities us-
ing common GUI tools (e.g. SourceShareTM7, WinCVS8),
developers/managers do not need additional work for data
collection. Also, it dose not take high costs to introduce
EPM into projects/organizations because the systems as the
sources of data collection are open source freeware.

Format translation and data store: EPM converts the
collected data into the XML format called the standardized
empirical software engineering data, so that EPM can deal

1CVS, http://www.cvshome.org/
2Mailman, http://www.list.org/
3Majordomo, http://www.greatcircle.com/majordomo/
4fml, http://www.fml.org/index.html.en
5GNATS, http://www.gnu.org/software/gnats/
6Bugzilla, http://www.bugzilla.org/
7SourceShareTM , http://www.zeesource.net/
8WinCVS, http://wincvs.org/

with not only the above three kinds of software repositories
but also various kinds of repositories according to purposes
for measurement. Data from other systems are available by
small adjustments of parameters. The data converted into
the XML format is stored in the PostgreSQL9 database.

Analysis and visualization: EPM analyzes the data
stored in the PostgreSQL database. For instance, in order
to analyze data related to CVS, EPM extracts the process
data about events such as checkin/checkout, transitions of
source code size, version histories of components, and so
forth. Then, EPM visualizes various measurement results
such as the growth of lines of code and the relationship be-
tween checkin and checkout. EPM also provides summaries
of each repository such as information of CVS logs. All the
measurement results are available through using common
web browsers (e.g. see Figure 2), so that users are easy to
share the results.

In this way, EPM supports users to obtain quantitative
data at low cost in real time and provides them with various
measurement results for understanding the current develop-
ment status. This would help users keep their projects under
control.

3 Visualizations of measurement results

Data mining techniques for software repositories have
been proposed to understand reasons of software changes
[7], to identify how communication delay among devel-
opers in physically distributed environments have effects
on software development [8], to detect potential software
changes and incomplete changes [11], and so forth. In con-
trast to these tools, the features of EPM are to visualize

9PostgreSQL, http://www.postgresql.org/

Figure 2. Measurement results through web
browsers

combinations of measurement results from three kinds of
software repositories and to be able to deal with data from
multiple projects simultaneously.

3.1 Combinations of measurement results

In addition to providing visualizations of measurement
results from each software repository, EPM also visualizes
combinations of measurement results from three kinds of
repositories. The followings show two examples of them.

Bug issues and checkins:Figure 3 represents the re-
lationship between the transition of the cumulative total of
issues (the line graph) and the time of checkins (the grayed
vertical lines on the X-axis) in our EASE project [6]. The
number of issues and checkins are measured from the repos-
itory in GNATS and CVS respectively. A checkin often oc-
curs after bug issues are reported because developers try to
modify or resolve the issues. The graph helps users (de-
velopers/managers) remember the situation where issues by
every file versions were raised. To the contrary, the file it-
self which is checked in CVS may include some bugs if the
graph indicates that there are issues after checkins.

Bug issues and e-mails among developers:Figure 4
illustrates the communication history among developers in
the EASE project. The black line graph is the transition
of the cumulative total of e-mails exchanged through using
Mailman. The vertical shorter/longer dashed lines repre-
sents when bug issues were raised/resolved. The light-gray
vertical lines mean when the checked-in files by developers
were uploaded to CVS. From the graph, users can confirm
the state of the communication among developers and iden-
tify the file versions which might have problems. Because
discussions on issues become active usually when issues are

Figure 3. Relationship between issues and
checkins

reported to an issue tracking system, the communication it-
self among developers might have problems if many issues
are reported but developers did not discuss on the issues.
Communication problems among developers bring the de-
crease of software productivity and reliability [8].

Figure 4. History of bug issues and e-mails
among developers

The integrated measurement results based on data from
configuration management systems, mailing list managers,
and issue tracking systems help developers understand cur-
rent and past events in development activities.

3.2 Visualizations of multiple project data

EPM has the capability to visualize multiple project data.
Comparing current projects with past ones would be help-
ful for managers to estimate the progress of projects and to
detect the unusual status in projects.

Comparison of measurement results among multi-
ple projects: EPM makes measurement results compara-
ble with multiple projects. Figure 5 represents the relation-
ship of the growth of lines of code between two project (the
upper line: SPARS [10], the lower line: EASE). The both
projects have been proceeding under the collaborative re-
search with authors’ universities and some software com-
panies. Some researchers and developers have been par-
ticipating in the both projects. Actually although the both
have different purposes and aspects, suppose here that they
have been developing software systems respectively under
similar conditions. The project managers can confirm some
common characteristics and roughly estimate the progress
of the later project (EASE) from the graph. For instance,
SPARS has the two phases in which it have evolved rapidly
for releasing major versions. EASE has just released the
first major version. The managers are easy to guess the near
future of the progress of EASE: the development of EPM
will stop for a while to test the EPM, to reconsider the de-
sign, and so forth.

Figure 5. Comparison of two projects

Distribution maps of multiple projects: Using mea-
surement results from three kinds of repositories in multi-
ple projects, EPM can generate distribution maps. Figure
6 is a distribution map using 100 Open Source Software
Development (OSSD) projects data collected from Source-
Forge.net10,11, which represents the relationship between
lines of code (the X-axis) and number of checkins (the Y-
axis). Suppose here that these projects are managed by one
software organization. The graph can be used for help-
ing managers identify “unusual” projects which indicate ex-
treme high or low values.

10SourceForge.net, http://sourceforge.net/
11We selected the 100 projects in Figure 6 randomly from the list of

most active projects in SourceFroge.net.

Figure 6. Distribution map of 100 OSSD
projects

3.3 Customizations of measurement parameters

EPM currently provides users with the five types of
graphs including Figure 3-5 and two types of summary in-
formation from CVS and mailing list data. Users have the
choice of visualizing single project data or multiple project
data according to purposes of analysis. EPM also pro-
vides an interface to customize queries for the PostgreSQL
database. Using the database schema for EPM which is
open to the public, users are able to input SQL sequences
and to create bar graphs, line graphs, and distribution maps
such as Figure 6. Because we would like to support var-
ious projects and organizations which have own problems
respectively, we decided to provide the minimum types of
graphs and summary information rather than to provide a
lot of them in advance. After feedback from software orga-
nizations using EPM, we will add other types of graphs in
the near future. Currently EPM can be viewed as a tool for
exploratory data analysis [5].

4 Discussion

In this section, we report a case study of applying EPM
to our project itself, in order to observe the actual usage of
the pre-defined 5 types of graphs mentioned above. We have
interviewed four developers on the advantages and the dis-
advantages of using EPM. The development environment of
this project is summarized in Table 1.

One of the advantages is that the graphs make developers
easy to understand the status of the project by identifying
distinctive parts indicated in the graphs. For instance, the
part of the flat line in the LoC graph reminded them why the
development seemed to be stopped. In fact, all developers
were on a business trip at the time. This could help them

Table 1. EPM development project
Target project EPM development project
Programming language Ruby, Java
Number of developers 4
Repositories CVS, Mailman, GNATS
Development period 3 months
Preparation period 1 week

increase the accountability for their managers. Other one is
that the graphs generated in real time motivated developers
to fix bugs, since they could be aware that there were still
unresolved issues.

In contrast to these advantages, some problems related
to the usage of EPM have been found. One is that visual-
izations are too complicated to understand the status of the
project in some cases. For instance, developers could not
distinguish which file versions corresponded to which ver-
tical lines in Figure 3, since one developer checked in CVS
for backup of his files every day and therefore a number of
checkins occurred. In this case, developers might need to
use two CVS (e.g. one is for software release and another
is for backup).

The above results are still the initial evaluations for EPM.
EPM will be introduced in some software companies in
the near future. We intend to evaluate the usefulness of
EPM with respect to (1) the effects on software develop-
ment and process improvement by providing measurement
results from multiple software repositories, and (2) the ben-
efit of giving the capability to manage multiple projects.

5 Conclusion and Future Work

The goal of this research is to construct an environment
for supporting measurement based software development
according to the ESEE framework. In this paper, we intro-
duced Empirical Project Monitor (EPM) as a partial imple-
mentation of ESEE, which helps developers/managers keep
projects under control by providing various visualizations
of measurement results related to project activities. Nowa-
days, we can gather and analyze massive data on software
development in a large scale using rapidly growing hard-
ware capabilities. By analyzing such the huge data col-
lected from thousands of software development projects, we
would like to provide useful knowledge and benefit not only
to individual developers/managers but also to organizations.

Empirical study on software development is an active
area in the field of Empirical Software Engineering (ESE).
But the approaches of ESE have not been sufficiently ap-
plied to software development in software industry although
companies hold many problems. The data related to soft-
ware development from the industrial world has seldom

been provided with university’s research. We are collabo-
rating with some software development companies as the
EASE project. Therefore, it would be a strong trigger for
going beyond the obstacle of the technical progress in soft-
ware engineering.

Acknowledgment

This work is supported by the Comprehensive De-
velopment of e-Society Foundation Software program of
the Ministry of Education, Culture, Sports, Science and
Technology. We thank Satoru Iwamura, Eiji Ono and
Taira Shinkai for supporting the development of Empirical
Project Monitor.

References

[1] A. Aurum, R. Jeffery, C. Wohlin, and M. Handzic.Manag-
ing Software Engineering Knowledge. Springer, Germany,
2003.

[2] V. Basili. Goal Question Metric Paradigm, in Encyclopedia
of Software Engineering (J. Marciniak ed.), pages 528–532.
John Weily and Sons, 1994.

[3] V. Basili. The experimental software engineering group: A
perspective. ICSE’00 award presentation, June 2000. Lim-
erick, Ireland.

[4] L. Briand, C. Differding, and D. Rombach. Practical guide-
lines for measurement-based process improvement. Techni-
cal Report ISERN-96-05, Department of Computer Science,
University of Kaiserslautern, Germany, 1996.

[5] S. Card, J. Mackinlay, and B. Shneiderman.Readings in
Information Visualization: Using Vision to Think. Morgan-
Kaufmann Publishers, San Meteo, CA, 1999.

[6] EASE. The EASE (Empirical Approach to Software Engi-
neering) project, http://www.empirical.jp/intex-e.html.

[7] D. German and A. Mockus. Automating the measurement of
open source projects. InProceedings of the 3rd Workshop on
Open Source Software Engineering, pages 63–67, Portland,
Oregon, 2003.

[8] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter.
An empirical study of global software development: Dis-
tance and speed. InProceedings of the 23rd international
conference on Software engineering (ICSE’01), pages 81–
90, Toronto, Canada, 2001.

[9] M. Ohira, R. Yokomori, M. Sakai, K. Matsumoto, K. Inoue,
and K. Torii. Empirical project monitor: Automatic data col-
lection and analysis toward software process improvement.
In Proceedings of 1st Workshop on Dependable Software
System, pages 141–150, Tokyo, Japan, 2004.

[10] SPARS. The SPARS (Software Product Archiving
and Retrieving System) project, http://iip-lab.ics.es.osaka-
u.ac.jp/SPARS/index.html.en.

[11] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. InPro-
ceedings of the 26th International Conference on Software
Engineering (ICSE’04), Edinburgh, Scotland, UK, 2004 (to
appear).

