
An Analysis Method for Improving a Bug Modification
Process in Open Source Software Development

Akinori Ihara Masao Ohira Ken–ichi Matsumoto
Graduate School of Information Science,
Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara, JAPAN 630-0192
tel.+81(743)-72-5318 fax.+81(743)-72-5319

{ akinori-i, masao, matumoto } @ is.naist.jp

ABSTRACT
As open source software products have evolved over time
to satisfy a variety of demands from increasing users, they
have become large and complex in general. Open source de-
velopers often face with challenges in �xing a considerable
amount of bugs which are reported into a bug tracking sys-
tem on a daily basis. As a result, the mean time to resolve
bugs has been protracted in these days. In order to reduce
the mean time to resolve bugs, managers/leaders of open
source projects need to identify and understand the bottle-
neck of a bug modi�cation process in their own projects. In
this paper, we propose an analysis method which represents
a bug modi�cation process using a bug tracking system as a
state transition diagram and then calculates the amount of
time required to transit between states. We have conducted
a case study using Firefox and Apache project data to con-
�rm the usefulness of the analysis method. From the results
of the case study, we have found that the method helped to
reveal that both of the projects took a lot of time to verify
results of bug modi�cations by developers.

Categories and Subject Descriptors
D.2.5 [SOFTWARE ENGINEERING]: Testing and Debug-
ging; D.2.9 [SOFTWARE ENGINEERING]: Management;
H.5.3 [INFORMATION INTERFACES AND PRESENTA-
TION]: Group and Organization Interfaces�Collaborative
computing, Computer�supported cooperative work, Web�
based interaction

General Terms
MANAGEMENT, MEASUREMENT

Keywords
bug tracking system, open source software development,
modi�cation process, repository mining, Firefox, Apache

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE-Evol’09,August 24–25, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-678-6/09/08 ...$10.00.

1. INTRODUCTION
A collective e�ort by geographically-distributed develop-

ers enables us to use high quality and functionality open
source software products. As open source software products
have evolved over time to satisfy a variety of demands from
increasing users, they have become large and complex in
general. As a result, open source developers often face with
challenges in �xing a considerable amount of bugs which are
reported into a bug tracking system [4, 19, 12, 17] on a daily
basis.
A bug tracking system is a system for sharing bug informa-

tion reported by project members including users, knowing
the progress of bug modi�cations, avoiding unmodi�ed bugs
and so forth. Although a bug tracking system is designed
to help developers collaboratively modify software bugs, the
current situation where a lot of bug information is reported
impedes e�cient bug modi�cation activities. The mean time
to resolve bugs has been protracted in these days.
For instance, the mean time to resolve bugs in Linux

kernel development was 1.8 years (1.25 median years) [14].
These facts indicate it takes a long time to resolve all re-
ported bugs in large-scale open source software development.
Reducing the mean time to resolve bugs is demanded not
only from users who want to use open source products safely
and comfortably, but also from developers who need to deal
with a lot of bugs.
In order to reduce the mean time to resolve bugs, man-

agers and/or leaders of OSS projects need to identify and
understand the bottleneck of a bug modi�cation process in
their own projects. In this paper, we propose an analysis
method which represents a bug modi�cation process using a
bug tracking system as a state transition diagram and then
calculates the amount of time required to transit between
states. Using Firefox and Apache project data, we also con-
duct a case study to evaluate the usefulness of our analysis
method. From the results of the case study, we have con-
�rmed that the method helped to reveal that both of the
projects took a lot of time to verify results of bug modi�ca-
tions by developers.
The paper is laid out as follows. Section 2 describes

related work and the motivation of our study. Section 3
presents a bug modi�cation process in a common open source
project, and then Section 4 proposes an method for analyz-
ing the mean time to resolve bugs based on the modi�ca-
tion process. Section 5 reports results of a case study using
Apache HTTP Server Project and Mozilla Firefox Project
data. Section 6 discusses the results of the case study and

bug reported

discussions
started

resolved bug
verified

bug resolved

bug accepted

remodification
requested

Untreated Phase Modification Phase Verification Phase

bug assigned

Figure 1: A bug modi�cation process using a bug tracking system

the usefulness of our method. Finally, Section 7 concludes
the paper and presents our future work.

2. RELATED WORK
This section introduces past studies on defect analysis in

industry software development and bug tracking systems in
open source software development.

2.1 Traditional Methods for Defect Analysis
One of major factors of cost overrun and delivery delay in

the traditional software engineering is defects which occur
during software development. Many analysis methods had
been proposed to analyze occurrence factors of defects.
For instance, ODC (Orthogonal Defect Classi�cation) can

help developers and testers identify phases and tasks to be
improved, by classifying each defect into several defect types
and determining whether or not the bias of the number of
defects among phases and among tasks [1, 3, 6]. DCA (De-
fect Causal Analysis) analyzes relationships between factors
of defects and the number of defects, by collecting detailed
information on each defect through interviews and question-
naires in natural language and then hierarchically organizing
defect factors using Fishbone diagrams [5, 13, 16].
Since these studies described above mainly focused on the

improvement of software development processes in propri-
etary software development organizations, the proposed
method might not be applied to analyzing bug modi�cation
processes in open source projects. In general, open source
projects do not have a well-de�ned development process and
planed resources. Di�erent types of analysis methods and/or
frameworks are required in order to bug modi�cation pro-
cesses in open source projects.

2.2 Analysis of Bug Tracking Systems
There are also many studies on bug modi�cation processes

with bug tracking systems in open source projects [2, 7, 8,
9, 11, 10, 15, 18, 20, 21].
For instance, Wang et al. proposed several metrics to

measure the evolution of open source software [20]. The
metrics include the number of bugs in software, the number
of modi�ed bugs and so on. As a result of a case study using
the Ubuntu project which is one of Linux-based operating
system distributions, the study found that about 20% of all
the reported bugs were actually resolved and over ten thou-
sand bugs were not assigned to developers. These �ndings
indicate that it takes a long time to resolve all bugs reported
into bug tracking systems and that it also takes a long time
to start modifying bugs. The study, however, did not re-
veal the amount of time to resolve bugs. In this paper we

propose a method to analyze the amount of time to resolve
bugs in open source projects at the �ne-grained level.
Mockus et al. [15] and Herraiz et al. [8] have reported

studies on the mean time to resolve bugs in open source
software development. Mockus et al. [15] have conducted
two case studies of the Apache and Mozilla projects to re-
veal success factors of open source software development.
In the case studies, they analyzed the mean time to resolve
bugs because rapid modi�cations of software bugs are gen-
erally demanded by users. As a result of the analysis, they
have found that the mean time to resolve bugs were short
if bugs existed in modules regarding to kernel and protocol,
and existed in modules with widely-used functions. They
also found that 50% of bugs with the priority P1 and P3
were resolved within 30 days, 50% of bugs with P2 were re-
solved within 80 days, and 50% of bugs with P4 and P5 were
resolved within 1000 days.
While [15, 8] mainly focused on precise understandings of

bug modi�cation processes in open source software develop-
ment, we are interested in the extraction of the bottleneck
in the bug modi�cation process. The aim of our study is to
help managers/leaders in open source projects to improve
the modi�cation processed in their won projects.

3. BUG MODIFICATION PROCESS
This section describes a bug modi�cation process using a

bug tracking system in a common open source project and
then de�ne several terms used in the paper.

3.1 Bug Modification Process with a Bug
Tracking System

Most open source projects use bug tracking systems to
unify management of bugs found and reported by develop-
ers and users in their projects. A bug tracking system helps
an open source project to know the progress of bug mod-
i�cations, to avoid leaving unmodi�ed bugs and so forth.
Popular bug tracking systems include Bugzilla [4], Mantis
[12], RedMine [17], Trac [19]1 and so on.
Figure 1 represents a bug modi�cation process using a bug

tracking system. Although a bug modi�cation process using
a bug tracking system slightly di�ers among individual bug
tracking systems, it substantially can be represented as a
state transition diagram in Figure 1.
Table 1 shows possible states of a bug in the modi�cation

process. By calculating the amount of time required to tran-
sit between states and the amount of bugs passing through

1RedMine and Trac are widely used for project manage-
ment. Bug-tracking functions are a part of the systems.

Table 1: States of a bug in a modi�cation process with a bug tracking system
state description
bug reported Developers and/or users send a report on a found bug into a bug tracking system.
discussions started Developers start discussions with a message board of a bug tracking system.
bug accepted Developers check a bug report and then accept a bug.
bug assigned A bug is assigned to developers.
bug resolved Developers resolve a bug.
re-modi�cation requested If a bug �x was not enough, re-modi�cations are requested to developers.
resolved bug veri�ed Developers verify whether a bug �x is correct or not.

any two states, we can perform a �ne-grained analysis to
�nd out the bottleneck in the modi�cation process.

3.2 Three Phases in a Modification Process
As illustrated in Figure 1, in this paper, we de�ne a bug

modi�cation process using a bug tracking system as a pro-
cess consisting of three di�erent phases: untreated phase,
modi�cation phase, and veri�cation phase.
The untreated phase focuses on a sub-process where bugs

are reported into a bug tracking system but have not been
accepted nor assigned to anyone. According to the study
[20], over ten thousand bugs reported into a bug tracking
system of the Ubuntu project were not assigned to anyone
and left in a state of untreated (no action to modify a bug).
So, we consider that it is worth analyzing the untreated
phase to precisely reveal delay factors of bug modi�cations.
The modi�cation phase is a sub-process where bugs are

substantially modi�ed. In this phase, a reported bug is ac-
cepted to be �xed and then assigned to developers. If the
developers �nish to modify the bug, the state of the bug
transits to �bug resolved�. Analyzing this phase would let
us know the actual amount of time open source developers
spend to modify bugs.
Finally, the veri�cation phase is a sub-process where mem-

bers in charge of quality assurance verify that modi�ed bugs
are correctly resolved. The veri�cation of bugs as well as the
bug modi�cation is a heavy-duty task [21]. If a bug modi-
�ed by developers was not veri�ed, the reported bug would
not be recognized as a �xed (closed) bug. The analysis of
the veri�cation phase would help managers/leaders in open
source communities to determine the proper number of qual-
ity assurance members.
Comparing with the past studies [8, 15] on the mean time

to resolve bugs in bug tracking systems, the analysis of bug
tracking systems based on the division of the bug modi�ca-
tion process might provide us new insights on the delay of
bug modi�cations.

4. ANALYSIS METHOD
This section describes an analysis method for identifying

the factors which prolong the mean time to resolve bugs
in bug tracking systems. The analysis method provides a
means to analyze the amount of time from �bug reported�
to �bug veri�ed� at the �ne grained level and helps to identify
the bottleneck in the complicated bug modi�cation process.

4.1 Overview
Using history data of modi�cations managed by bug track-

ing systems, the analysis method represents a bug modi�ca-
tion process as a state transition diagram and then obtains

the amount of time spent for transitions to each state. Rep-
resenting the bug modi�cation process as a state transition
diagram such as Figure 1 allows us to overview the mean
time to resolve bugs.
Toward improving the bug modi�cation process and short-

ening the mean time to resolve bugs, the analysis method
can help managers/leaders in open source communities to
gain understandings of the bottleneck of the bug modi�ca-
tion process and of a precise picture of the process in their
own projects.

4.2 Target Data
In this paper the analysis method only targets �xed and

closed bugs. Currently un�xed (opened) bugs are not the
target of the method. It neither target unaccepted bug re-
ports. Unaccepted bugs may happen when developers do
not recognized them as bugs; developers cannot reproduced
the same situation as reported by a user; reported phenom-
ena are not due to bugs but speci�cations: same bugs are
already reported and �xed.
A bug tracking system can be used for not only reporting

bugs but also requesting new features of software products
as a sort of a task management system. Such feature re-
quests registered in a bug tracking system are outside of the
scope of our analysis method, because in this paper we are
interested in focusing on a bug modi�cation process.

4.3 Procedure

4.3.1 Process definition and data acquisition
A bug modi�cation process must be de�ned before using

the analysis method, because it slightly varies depending on
the type of bug tracking systems and management policies
in open source projects. For instance, in the Mozilla Firefox
project, there are other paths from �bug accepted� to �bug
resolved� (e.g., a direct path from �bug accepted� to �bug
resolved�, a path from �bug assigned� to �bug accepted�, and
so on).
After de�ning a bug modi�cation process in a targeted

open source project, history data of a bug tracking system
is collected. The history data includes when bug states are
changed by whom.

4.3.2 Creating state transition diagrams
Using collected history data of a bug tracking system, a

state transition diagram is created. The diagram has two
roles to understand a bug modi�cation process: a common
state transition diagram with state transition probabilities
and a diagram focusing on time to transit from one state to
another state. The detail of the diagram will be introduced
in the case study.

discussions
started bug resolved

bug accepted

bug reported

resolved
bug verified

re-modification
requested

Untreated Phase Modification Phase Verification Phase

bug assigned

p1

p2

p3

p4 p6

p5

p10 p8

p7

p11

p16

p12

p13

p15

p14

p9

Figure 2: A bug modi�cation process using Bugzilla

Table 2: Statics of Apache and Firefox
Apache Firefox

period (from) 2002/03/17 2001/01/01
period (to) 2008/11/30 2008/12/10
�xed and closed bugs [analysis target] 747 2,376
feature requests 545 4,509
currently modifying bugs 2,257 42,729
modi�ed but unveri�ed bugs 671 5,171
unmodi�ed but closed bugs 1,444 8,201
total number of reported bugs 5,664 62,986

4.3.3 Analysis based on modification phases
As described in Section 3.2, the analysis method divides

a bug modi�cation process into the three phases: untreated
phase, modi�cation phase, and veri�cation phase. Calculat-
ing and analyzing the amount of time spent in each phase
helps managers/leaders in open source projects to identify
the longest phase in the bug modi�cation process and then
to take measures to improve the current bug modi�cation
process in own projects.

4.3.4 Analysis based on state transition diagrams
As presented in Figure 1 and Table 1, a bug is modi�ed

through several states in the bug modi�cation process. Since
previous studies did not reveal elapsed days spent to tran-
sit between any two states and the number of bugs passed
through any paths, the bottleneck in a bug modi�cation
process using a bug tracking system could not be identi�ed.
Our state transition diagrams allow managers/leaders to

perform �ne-grained analysis of the modi�cation process and
to monitor the progress of bug modi�cations in their own
projects. In the future work, we would like to provide a
means for monitoring the bug modi�cation progress in real-
time.

5. CASE STUDY
This section describes a case study which has been con-

ducted to con�rm the usefulness of the analysis method men-
tioned in Section 4. In the case study, the analysis method
was applied to bug modi�cation processes in two open source
projects: Apache HTTP Sever project and Mozilla Firefox
project.

5.1 Target Projects and Data
In the Apache HTTP Sever project and the Mozilla Fire-

fox project, Bugzilla [4] is used to manage reported bugs.
Brief summaries of the two projects are as follows.

• Apache HTTP Server Project
The Apache HTTP Server project has been develop-
ing a web server software product with high function-
ality and scalability. The product is recognized as high
quality open source software and has the biggest mar-
ket share. The project has been using Bugzilla since
2002. In the case study, history data of Bugzilla in
Apache version 1.3, 2.0, and 2.2 had been examined.

• Mozilla Firefox Project
The Mozilla Firefox project has been developing a web
browser product with a rapidly increasing share. The
product is very popular due to the extensibility of
functions (i.e., add-ons). The project has been using
Bugzilla since 2001. In the case study, history data of
Bugzilla in Firefox version 1.0, 2.0, and 3.0 had been
examined.

Figure 2 shows the bug modi�cation process in the Apache
and Firefox projects. We can see di�erent paths of state
transitions from Figure 1. The actual modi�cation pro-
cess in the Apache and Mozilla projects includes additional
paths: p1 (�bug reported� to �bug resolved�), p4 (�bug re-
ported� to �bug assigned�), p6 (�discussions started� to �
bug assigned�), p7 (�bug accepted� to �bug resolved�), p10
(�bug assigned� to �bug accepted�) and P13 (�bug resolved�
to �re-modi�cation requested�).
Table 2 shows statistics of the target data. The total num-

ber of bug reports for the target periods is 5,665 for Apache

Table 3: The mean time to resolve bugs in the Apache project by each phase
elapsed days in elapsed days in elapsed days in total elapsed days

the untreated phase the modi�cation phase the veri�cation phase
average (days) 35.20 82.22 105.00 191.27
median (days) 0.42 15.14 51.45 171.14
standard deviation 68.75 174.28 118.46 197.20
variance 4726.09 30374.94 14032.87 38886.46
maximum (days) 258.72 2153.45 843.08 2295.03
minimum (days) 0.00 0.00 0.00 0.00
number of bugs 86 747 747 747

Table 4: The mean time to resolve bugs in the Firefox project by each phase
elapsed days in elapsed days in elapsed days in total elapsed days

the untreated phase the modi�cation phase the veri�cation phase
average (days) 6.79 57.50 80.03 152.33
median (days) 0.05 9.35 9.88 58.17
standard deviation 32.22 133.40 173.18 236.47
variance 1038.04 17794.76 29992.20 55916.73
maximum (days) 478.96 2333.01 1877.17 2416.00
minimum (days) 0.00 0.00 0.00 0.00
number of bugs 1,631 2,376 2376 2,376

and 62,986 for Firefox. These bug reports include feature
requests (545 for Apache and 4,509 for Firefox). Currently
modifying bugs (2,257 for Apache and 42,729 for Firefox),
unveri�ed bugs (671 for Apache and 5,171 for Firefox) and
unmodi�ed but closed bugs (1,444 for Apache and 8,201 for
Firefox) are excluded from our analysis, since we cannot
know when currently open bugs will be �xed and closed in
order to calculate the mean time to resolve them.
In this paper, the analysis method targets data of �xed

and closed bugs (747 for Apache and 2,376 for Firefox) to
present a precise picture of bug modi�cation processes in the
Apache and Firefox projects. Although the target periods
of the case study are di�erent between Apache (80 months)
and Firefox (105 months), the number of �xed and closed
bugs in Firefox is much larger (nearly three times larger)
than that in Apache. This would be due to the di�erences
of domains; Apache is a server software product and Firefox
is a desktop application.

5.2 Analysis Based on Modification Phases
Table 3 and Table 4 respectively show statistics of bugs in

the three modi�cation phases (untreated, modi�cation, and
veri�cation phase) and the mean time (the total elapsed
days) to resolve bugs in the Apache and Firefox projects.
Note that the statistics in the untreated phase do not in-

clude the bug report data of the direct state transition from
�bug reported� to �bug resolved�, because developers would
be likely to resolve bugs before reporting bugs into Bugzilla
in case of the direct state transition from �bug reported� to
�bug resolved�. For in stance, 661 of 747 (88.5%) bugs had
the direct state transition from �bug reported� to �bug re-
solved� in the Apache project. We consider that those data
should not be counted in the untreated phase. Instead, we
included them in the modi�cation phase.
In the both projects, the minimum elapsed days in each

phase were 0.00. This can happen when developers �nd a
bug, �x it, and then report it into Bugzilla. In contrast,

the maximum elapsed days were over 200 days (e.g., over
6 years in the modi�cation phase of the Firefox project).
Since these bugs might be outliers due to some reasons, it
seems to be adequate to use the median days to discuss the
mean time to resolve bugs. We can see that elapsed all the
median days in Firefox were shorter than Apache.
Figure 3 and Figure 4 show distributions of the number of

reported bugs in each modi�cation phase ((a), (b), (c)) and
in the total of the three phase ((d)). In Figure 3and Figure
4, the X-axis and Y-axis respectively mean elapsed days to
resolve bugs and the number of reported bugs.
In the untreated phase, 51 of 86 (59.3%) bugs for Apache

and 491 of 1,631 (30.1%) bugs for Firefox spent within a
day, while 21 of 86 (24.4%) bugs for Apache and 61 of 1,631
(5.4%) bugs for Firefox spent over 90 days. In the modi�-
cation phase, 172 of 747 (23.0%) bugs for Apache and 542
of 2,376 (22.8%) bugs for Firefox spent within a day, while
199 of 747 (26.6%) bugs for Apache and 412 of 2,376 (17.3%)
bugs for Firefox spent spent over 90 days. In the veri�cation
phase, 180 of 747 (24.1%) bugs for Apache and 483 of 2,376
(20.3%) bugs for Firefox spent within a day, while 314 of 747
(42.0%) bugs for Apache and 504 of 2,376 (21.2%) bugs for
Firefox spent over 90 days. In total, over the half of Apache
bugs spent over 90 days to be �xed (closed), while the half
of Firefox bugs were �xed within 90 days.
As a result of our analysis using the proposed method, we

have found that elapsed days in the untreated phase were
shorter than that in the modi�cation and veri�cation phases
in both of the Apache and Firefox projects. We can conclude
that elapsed days in the modi�cation and veri�cation phase
have an e�ect on the total prolongation of the mean time to
resolve bugs in Apache and Mozilla.
Although these results are not surprising results but ex-

pected, we also have found that there were bugs elapsed over
three months in the untreated phase (i.e., 24.4% of Apache's
bugs and 5.4% of Firefox's bugs in the untreated phase) from

(a) Elapsed days in the untreated phase

Nu
mb

ers
 of

 bu
gs

 (lo
g)

0 10 20 30 40 50 60 70 80 90

1
10

10
0

30
0

days
over90

50
0

0 10 20 30 40 50 60 70 80 90

1
10

10
0

30
0

(b) Elapsed days in the modification phase
days

Nu
mb

ers
 of

 bu
gs

 (lo
g) 50

0

over90

0 10 20 30 40 50 60 70 80 90

1
10

10
0

30
0

(c) Elapsed days in the verification phase
days

Nu
mb

ers
 of

 bu
gs

 (lo
g) 50

0

over90

0 10 20 30 40 50 60 70 80 90

1
10

10
0

30
0

(d) Total elapsed days
days

Nu
mb

ers
 of

 bu
gs

 (lo
g) 50

0

over90

Figure 3: The distribution of the number of bugs and elapsed
days of the Apache project in (a) the untreated phase, (b)
the modi�cation phase, (c) the veri�cation phase, and (d)
the total phase. Bugs with over 90 elapsed days are summed
up on the right side of the histograms.

0 10 20 30 40 50 60 70 80 90

1
10

10
0

50
0

(a) Elapsed days in the untreated phase

Nu
mb

ers
 of

 bu
gs

 (lo
g)

days

Nu
mb

ers
 of

 bu
gs

 (lo
g) 10

00

over90

0 10 20 30 40 50 60 70 80 90

1
10

10
0

50
0

(b) Elapsed days in the modification phasedays
Nu

mb
ers

 of
 bu

gs
 (lo

g)
Nu

mb
ers

 of
 bu

gs
 (lo

g) 10
00

over90

0 10 20 30 40 50 60 70 80 90

1
10

10
0

50
0

Nu
mb

ers
 of

 bu
gs

 (lo
g)

Nu
mb

ers
 of

 bu
gs

 (lo
g) 10

00

(c) Elapsed days in the verification phasedays over90

0 10 20 30 40 50 60 70 80 90

1
10

10
0

50
0

(d) Total elapsed daysdays

Nu
mb

ers
 of

 bu
gs

 (lo
g)

Nu
mb

ers
 of

 bu
gs

 (lo
g) 10

00

over90

Figure 4: The distribution of the number of bugs and elapsed
days of the Firefox project in (a) the untreated phase, (b)
the modi�cation phase, (c) the veri�cation phase, and (d)
the total phase. Bugs with over 90 elapsed days are summed
up on the right side of the histograms.

Figure 3 and Figure 4. These bugs might not largely in�u-
ence on the total prolongation of the mean time to resolve
bugs, but it might not be acceptable for the projects to ig-
nore them.

5.3 Analysis Based on State Transition
Diagrams

Figure 5 and Figure 6 show the bug modi�cation process
in Apache and Firefox respectively. In the �gures, the val-
ues written above the lines (arcs) show the amount of time
(days) spent to transit between states. and also shows the
bug modi�cation process in Apache and Firefox respectively,
but, in these �gures, the values written above the lines (arcs)
mean the number of the bugs transited between states and
their probabilities (i.e., state transition probabilities).
Note that the values are calculated by simply counting

how many bugs passed through each arch. The analysis
method did not take into account existences of looped paths
and self-loops. We need to consider this issue in the future.

5.3.1 Analyzing the time spent to transit between
states

Using the analysis method, two transitions consume most
of the time in both Apache and Firefox projects:

1 The transition from �bug resolved� to �resolved bug
veri�ed� spent the largest amount of time to transit.

2 The transition from �bug accepted� to �bug resolved�
spent the second largest amount of time to transit.

However, the third largest amount of time to transit was
di�erent between the Apache and Firefox projects. In the
Apache project, the third largest amount of time to transit
was the transition from �bug assigned� to �bug resolved�. In
contrast, in the Firefox project, the third largest amount of
time to transit was the transition from �bug accepted� to
�bug assigned�. We also found that in the both projects,
the transition from �bug assigned� to �bug resolved� spent
shorter time to transit than the transition from �bug ac-
cepted� to �bug resolved�.

5.3.2 Analyzing the bug modification sub-processes
As illustrated in Figure 5 and Figure 6, the method could

visualize how many bugs passed through which path, by
dividing the entire bug modi�cation process into �ne grained
sub processes. The �gures showed that the bugs without
accepted nor assigned (the direct path from �bug reported�
to �bug resolved�) were 661 (88.5%) in the Apache project
and 745 (31.4%) in the Firefox project.
In the Firefox project, over the half of reported bugs

(1,501 of 2,376 (63.2%)) transited to �discussions started�
and then moved to �bug accepted� (442 of 1,501 bugs) or
�bug assigned� (1,079 of 1,501 bugs). The Firefox project
had more �re-assigned bugs� (393 of 2,079 assigned bugs
(18.9%)) than that (3 of 96 assigned bugs (3.1%))of the
Apache project. We can also see that the Firefox project
had more bugs (1,422 bugs) resolved after assigning them to
developers than that (90 bugs) of the Apache project.

6. DISCUSSIONS
Based on the results of our case study, this section dis-

cusses the usefulness of the analysis method.

6.1 Analysis Based on Modification Phases
Since the past studies on the mean time to resolve bugs

[8, 15, 20] only analyzed the total amount of time from �bug
reported� to �bug veri�ed�, they could not identify which
phase has the modi�cation delay. By dividing the bug mod-
i�cation process into the three semantic phases, our anal-
ysis method allowed us to �gure out that elapsed days in
the modi�cation and veri�cation phase had an e�ect on the
prolongation of the mean time to resolve bugs in the Apache
and Mozilla projects.
We could also �nd that there were bugs elapsed over three

months in the untreated phase (i.e., 24.4% of Apache's bugs
and 5.4% of Firefox's bugs in the untreated phase). From
these results, we consider that the analysis method would
help managers/leaders of open source projects to gain under-
standings of the bottleneck of the bug modi�cation process
and of a precise picture of the process in their own projects.

6.2 Analysis Based on State Transition
Diagrams

In order to reduce the mean time to resolve bugs, man-
agers/leaders of open source projects �rstly need to identify
and understand the bottleneck of a bug modi�cation process
in their own projects. As a result of applying the analysis
method to the bug modi�cation processes in the Apache
and Firefox projects, we have con�rmed that the analysis
method could identify the bottlenecks of the modi�cation
processes in the two projects: from �bug resolved� to �bug
veri�ed� and from �bug accepted� to �bug resolved�.
Although elapsed days from �bug resolved� to �bug ver-

i�ed� were the longest transitions between any two states,
we could not con�rm the reason (e.g., bugs were closely-
inspected in the period? or quality assurance members were
late to get round to the veri�cation?). We need to further
analyze those reasons to provide a support for reducing the
mean time to resolve bugs.
We could also �nd that there were the three major pat-

terns of elapsed days from �bug reported� to �bug resolved�
as follows.

(a) from �bug reported� to �bug resolved�

(b) from �bug accepted� to �bug resolved�

(c) from �bug assigned� to �bug resolved�

We expected that the pattern (a) should be the fastest
path because developers could modify bugs before reporting
bugs. However, the pattern (b) and (c) were faster than
the pattern (a) in both of the Apache and Firefox projects.
This indicates that bug assignments are critically important
for reducing the mean time to resolve bugs. In this way, we
could obtain the appropriate path for e�cient modi�cations
by using the analysis method.
We also found that there were di�erent bottlenecks be-

tween Apache and Firefox. While the third longest state
transition in Apache project was from �bug assigned� to �bug
resolved�, the third longest state transition in the Firefox
project was from �bug accepted to �bug assigned�. In this
fashion, the analysis method helped us to �nd bottlenecks
of bug modi�cation processes according to characteristics of
individual projects.
From these results described above, we can conclude that

the analysis method is useful for managers/leaders of open

discussions
started bug resolved

bug accepted

bug reported

resolved
bug verified

re-modification
requested

Untreated Phase Modification Phase Verification Phase

3 (0.4%)

90(94.7%)

2 (2.6%)

76(10.2%)

7(0.9%) 3(3.1%)
74(97.4%)

3(
3.1

%)
2 (

20
.0%

)

8(80.0%)

661(88.5%)

10(9.5%)

95(90.5%)

84(9.8%)

22(2.9%)

769(90.2%)

747
(97.1%)

0.0

13.5

0.0

0.4

0.5 6.3
0.1

0.
1 0.
4

35.3

11.8

3.4

6.8

2.4

7.8

39.0

bug assigned

Figure 5: The bug modi�cation process in the Apache project. The bold numbers on the arcs are the number of bugs and
state transition probabilities. The italic numbers are elapsed days for a transition between two states.

discussions
started bug resolved

bug accepted

bug reported

resolved
bug verified

re-modification
requested

Untreated Phase Modification Phase Verification Phase

38 (1.6%)

1422 (68.4%)

422 (28.1%)

1501(63.2%)

92(3.9%) 393(18.9%)
1079(71.9%)

26
4 (

12
.7%

)
42

5 (
51

.6
%)

399 (48.4%)

745(31.4%)

82 (26.8%)

224(73.2%)

262(9.7%)

61(2.5%)

2446(90.3%)

2376
(97.5%)

0.0

3.2

0.0

0.0

0.3 0.0
0.5

0.
0

5.
3

7.0

3.7

0.2

0.8

0.5

1.6

7.1

bug assigned

Figure 6: The bug modi�cation process in the Firefox project. The bold numbers on the arcs are the number of bugs and
state transition probabilities. The italic numbers are elapsed days for a transition between two states.

source projects to gain understandings of the bottleneck of
the bug modi�cation process and of a precise picture of the
process in their own projects, toward improving the bug
modi�cation process and shortening the mean time to re-
solve bugs.

6.3 Threats to Validity
In this paper, we de�ned the start of the modi�cation

phase as the time of �bug accepted� or �discussion started�.
But the actual start time of modi�cations by developers can
be earlier than the time when developers report bugs. In
the future, we need to precisely de�ne the start time of the
modi�cations by using CVS commit logs.

The current analysis method does not take account of
looped paths and self loops in the state transitions. In
Figure 5 and Figure 6, represented transition probabilities
might be derived based on calculations of looped paths and
self loops. We have to consider how many times a bug tran-
sits to the same state.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed an analysis method which rep-

resents a bug modi�cation process using a bug tracking sys-
tem as a state transition diagram and then calculates the
amount of time required to transit between states. Using

Firefox and Apache project data, we also conducted a case
study to evaluate the usefulness of our analysis method.
From a case study using Firefox and Apache project data,

we have con�rmed the usefulness of the method as follows.

• The method helped to identify the phase to be reduced
by dividing the bug modi�cation process into the three
phases.

• The method could �nd out the bottleneck of a bug
modi�cation process by representing it as a state tran-
sit diagram consisting of �ne grained sub processes.

• The method could extract the di�erence of modi�ca-
tion processes between Firefox and Apache.

• As empirical �ndings, the method could identify that
verifying resolved bugs were the most time-consuming
task in both of the Apache and Firefox projects .

The results of our case study suggested that the analy-
sis method could provide managers/leaders of OSS projects
with useful information as demonstrated in Section 5, to-
ward improving the bug modi�cation process and shortening
the mean time to resolve bugs.
In this paper, however, we did not show the relationships

between the states of bugs and the attributes of bugs (e.g.,
severity, priority, and so on). In the future, the analysis
method should be improved to provide useful insights on
such the relationships.

8. ACKNOWLEDGEMENT
We appreciate the anonymous reviewers giving insightful

comments and helpful suggestions. We would like to thank
Asa Dotzler of the Mozilla project for giving us a lot of useful
comments and advises on the case study. We also would
like to thank Mizuki Yamamoto for helping us analyze open
source protect data.
This research is being conducted as a part of the Next

Generation IT Program and Grant-in-aid for Young Scien-
tists (B), 20700028, 2009 by the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan.

9. REFERENCES
[1] K. A. Bassin, T. Kratschmer, and P. Santhanam.

Evaluating software development objectively. IEEE
Software, 15(6):66�74, 1998.

[2] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, and T. Zimmermann. What makes a good
bug report? In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations
of software engineering(FSE'08), pages 308�318, 2008.

[3] I. Bhandari, M. Halliday, E. Tarver, D. Brown,
J. Chaar, and R. Chillarege. A case study of software
process improvement during development. IEEE
Transactions on Software Engineering,
19(12):1157�1170, 1993.

[4] Bugzilla. http://www.bugzilla.org/.
[5] D. N. Card. Learning from our mistakes with defect

causal analysis. IEEE Software, 15(1):56�63, 1998.

[6] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday,
D. Moebus, B. Ray, and M.-Y. Wong. Orthogonal
defect classi�cation-a concept for in-process
measurements. IEEE Transactions on Software
Engineering, 18(11):943�956, 1992.

[7] M. W. Godfrey and Q. Tu. Evolution in open source
software: A case study. In Proceedings of the
International Conference on Software
Maintenance(ICSM'00), pages 131�142, 2000.

[8] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona,
and G. Robles. Towards a simpli�cation of the bug
report form in eclipse. In Proceedings of the 2008
international working conference on Mining software
repositories (MSR'08), pages 145�148, 2008.

[9] S. Kim, K. Pan, and E. E. J. Whitehead, Jr. Memories
of bug �xes. In Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of
software engineering(FSE'06), pages 35�45, 2006.

[10] S. Kim and E. J. Whitehead, Jr. How long did it take
to �x bugs? In Proceedings of the 2006 international
workshop on Mining software repositories(MSR'06),
pages 173�174, 2006.

[11] S. Kim, T. Zimmermann, K. Pan, and E. J. J.
Whitehead. Automatic identi�cation of
bug-introducing changes. In Proceedings of the 21st
IEEE/ACM International Conference on Automated
Software Engineering(ASE'06), pages 81�90, 2006.

[12] Mantis. http://www.mantisbt.org/.
[13] R. G. Mays, C. L. Jones, G. J. Holloway, and D. P.

Studinski. Experiences with defect prevention. IBM
Systems Journal, 29(1):4�32, 1990.

[14] A. Michail and T. Xie. Helping users avoid bugs in gui
applications. In Proceedings of the 27th international
conference on Software engineering(ICSE'05), pages
107�116, 2005.

[15] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309�346, 2002.

[16] T. Nakajo and H. Kume. A case history analysis of
software error cause-e�ect relationships. IEEE
Transactions on Software Engineering, 17(8):830�838,
1991.

[17] RedMine. http://www.redmine.org/.
[18] J. �liwerski, T. Zimmermann, and A. Zeller. When do

changes induce �xes? In Proceedings of the 2005
international workshop on Mining software
repositories (MSR'05), pages 1�5, 2005.

[19] Trac. http://trac.edgewall.org/.
[20] Y. Wang, D. Guo, and H. Shi. Measuring the

evolution of open source software systems with their
communities. SIGSOFT Softw. Eng. Notes, 32(6):7,
2007.

[21] 6 C. Yilmaz and C. Williams. An automated
model-based debugging approach. In Proceedings of
the twenty-second IEEE/ACM international
conference on Automated software engineering, pages
174�183, 2007.

