
A Time-Lag Analysis toward Improving
the Efficiency of Communications among

OSS Developers

Masao Ohira, Kiwako Koyama, Akinori Ihara,
Shinsuke Matsumoto, Yasutaka Kamei, and Ken-ichi Matsumoto

Graduate School of Information Science,
Nara Institute of Science and Technology,
8916-5, Takayama, Ikoma, Nara, Japan

{masao,kiwako-k,akinori-i,shinsuke-m,yasuta-k,matumoto}@is.naist.jp
http://se.naist.jp/

Abstract. Open source software (OSS) is developed by globally dis-
tributed developers with a variety of lifestyles. In such the development
environment, the time-lag of communications among developers is more
likely to happen due to the time difference among locations and the dif-
ference of working hours for OSS development. A means for effective
communications among OSS developers has been increasingly demanded
in recent years, since even an OSS product and its users requires a prompt
response to issues such as defects and security vulnerabilities. In this pa-
per, we propose an analysis method for observing the time-lag of commu-
nications among developers in an OSS project and then facilitating the
communications effectively. We have conducted a case study in which our
analysis method was applied to mailing-list data of the Python project.
As the results, we have confirmed that our method could identify the ex-
istence of the time-lag in communications among Python developers and
have achieved findings on the optimum timing for the communications.

Key words: time-lag analysis, distributed software development, open
source software, OSS community

1 Introduction

Open source software (OSS) such as Linux and Apache is generally developed
by globally distributed developers. Unlike commercial software development in a
company, OSS development does not necessarily request developers to engage in
development at a designated time and location. OSS developers may voluntarily
decide whether they continue to dedicate themselves to OSS development or not.

In this OSS development environment, a time-lag occurs in communications
among developers more than a little, because of differences of time zones among
geographically-distributed developers with a variety of lifestyles. For instance,

2 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

according to the geographical distribution of registered users at SourceForge1

which was reported by Robles and Gonzalez-Barahona [1], the top three regions
by the number of registered developers at SourceForge are North America, West
Europe, and China. Since the time-lag among those regions is at least more
than five hours, it would not be easy to discuss among developers in real-time.
Furthermore, even if developers reside in the same time zone, it is not still
guaranteed that developers can communicate each other in real time, because
each developer has no constraint on working hours.

While the importance of decision-making and consensus building through dis-
cussions among developers is increasing especially in a large-scale OSS project
with a number of developers, communications among developers with various
time zones and lifestyles might trigger an occurrence of a time-lag and then im-
pede rapid OSS development. In particular, in case prompt actions are required
(e.g., fixing critical bugs regarding security vulnerability), the delay of decision-
making and consensus building due to the communication time-lag among de-
velopers would results in decreasing software reliability and loosing users’ trust.

The goal of our research is to construct a support mechanism for effective
communications among geographically-distributed OSS developers. As a first
step toward achieving the goal, in this paper we present an analysis method for
helping OSS developers comprehend a whole picture of a communication time-
lag occurred in a OSS project. The analysis method targets mailing list archives
as a data source, and consists of three kinds of analyses as follows;

1. analysis of a geographical distribution and activity time of OSS developers
2. analysis of a distribution of time required for information exchanges among

OSS developers in different locations, and
3. analysis of appropriate timing for sending messages.

From a case study with Python project [2] data, this paper explores the useful-
ness of the analysis method.

2 Analysis Method

This section describes data extraction, conversion and classification which are
necessary in advance of performing our analysis.

2.1 Preparation

Data extraction and conversion. The target data source for our analysis is
archives of mailing lists which are used by OSS developers to exchange informa-
tion. The reason we select mailing list archives as the target data for our analysis
1 SourceForge is one of the largest OSS development community, which provides reg-

istered projects with a variety of software development support tools such as source
code management tool, bug tracking system, and mailing lists. As of February 2009,
more than 230,000 OSS projects and more than two million users have been regis-
tered to SourceForge.

A Time-Lag Analysis for Improving Communications among OSS Developers 3

ID posted date and time location(time zone) Coordinated Universal Time (UTC)message A 2009/04/29 10:33:53 UTC＋9 2009/04/29 01:33:53message B 2009/04/28 22:40:04 UTC－4 2009/04/29 02:40:04message C 2009/04/29 09:12:30 UTC＋3 2009/04/29 06:12:30message D 2009/04/29 02:26:59 UTC－10 2009/04/29 12:26:59
info. of posted messages info. of replied messages time lag (hours)ID posted date and time location ID replied date locationmessage A 2009/04/29 10:33:53 UTC＋9 message B 2009/04/28 22:40:04 UTC－4 1.10message B 2009/04/28 22:40:04 UTC－4 message C 2009/04/29 09:12:30 UTC＋3 3.54message A 2009/04/29 10:33:53 UTC＋9 message D 2009/04/29 02:26:59 UTC－10 10.88

post A : _________reply B : Re:_________reply C : Re:Re:_________reply D : Re:_________
(a) a thread in a mailing list (b) a list of information of posted/replied messages

(c) a relationship among posted and replied messages

Fig. 1. Data extraction and conversion

is because mailing lists are widely used in OSS projects. We consider that data
of mailing list archives allows us to reveal a whole picture of the existence of
time-lag in many OSS projects.

In order to apply the analysis method to the target data, firstly we need
to extract information of posted date and time, and posted locations from
mailing list archives (i.e. from e-mail headers). In what follows, “posted date and
time” means local date and time of a message’s sender, and “posted locations”
is presented as time-lag between Coordinated Universal Time (UTC) and local
time. For instance, “UTC+9” means the location of Japan because the standard
time of Japan is nine hours prior to UTC.

Figure 1 shows the procedure of data extraction and conversion. When a
developer posts a message to a mailing list, the message is delivered to subscribed
developers of the mailing list. Replying to the post, the other developers can
discuss the message Using such the post-reply relationship (i.e., thread structure)
in a mailing list, we extract information on posted/replied date and time, and
locations (time zones) from mailing list archives 2.

For instance, from a thread structure illustrated in Fig.1(a), we extract infor-
mation of posted and replied messages as the table in Fig.1(b). Then we convert
the information into post-reply relationships as the table in Fig.1(c) and calcu-
late time-lag from a difference between posted and replied date and time. Note
that we suppose that message B replied to message A can be a posted message
for message C.

Classification of data. Several factors such as differences of time zones (i.e.,
countries and/or regions) and differences of developers’ working hours may have
2 We do not collect data from posted messages with no replies.

4 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

an influence on time-lag between posted time and replied time. For instance,
communications among developers living in different time zones might be pro-
longed because of differences of lifestyles (e.g., dinner time or sleeping time).
And developers in the same time zone might be still difficult to communicate
each other in real time, because each developer has no constraint on working
hours.

In order to distinguish between the time-lag due to time zone differences and
the time-lag due to lifestyle differences, the collected data described above is
classified into data within and over the time-lag of 24 hours. Many of replied
messages within 24 hours after a post would be affected by differences of time
zones, while replied messages over 24 hours after a post would be generated by
differences of developers’ lifestyles and/or difficulty of the content of a posted
message, rather than geographical differences among developers. For these rea-
sons, our analysis method targets the data of posted and replied messages within
the 24 hours time-lag.

2.2 Procedure

Geographical distribution and activity time of OSS developers. In order
to understand the existence of the communication time-lag in an OSS project,
the analysis method firstly identifies a geographical distribution of developers of
the project, counting the number of replied messages by each location (UTC-11
～UTC+12). The analysis method also identifies a distribution of the number of
replied messages by local time in each location in oder to understand working
hours of developers by each location, since developers’ working hour can differ
even in the same location. By this means, we can identify active or inactive
locations and working hours of OSS developers.

Distribution of time required for information exchanges among OSS
developers in different locations. In order to understand the communication
time-lag due to the geographical (time zone) differences, the analysis method
calculates distributions of time required for information exchanges among OSS
developers in different locations and the same locations respectively. This helps
us more clearly distinguish between the time-lag by the geographical differences
and the time-lag by the differences of developers’ lifestyles.

Appropriate timing for sending messages. In order to identify the ap-
propriate timing for communications which resolves communication time-lags as
much as possible, the analysis method calculates the number of replied messages
by each hour, using posted (local) time and replied (local) time. A numer-
ical number in Fig.2(a) shows size of time-lag (hours) between time zones A and
B. Fig.2(b) shows the number of pairs of posted messages from time zone A and
replied messages from time zones B. For instance, suppose that one developer in
A post a message between 9 and 12, and other developer in B replies a message

A Time-Lag Analysis for Improving Communications among OSS Developers 5replied (local) time in time zones B
posted (local) tim
e in time zones A

0 +3 +6 +9 +12 +15 +18 +21+21 0 +3 +6 +9 +12 +15 +18+18 +21 0 +3 +6 +9 +12 +15+15 +18 +21 0 +3 +6 +9 +12+12 +15 +18 +21 0 +3 +6 +9+9 +12 +15 +18 +21 0 +3 +6+6 +9 +12 +15 +18 +21 0 +3+3 +6 +9 +12 +15 +18 +21 0
3 6 9 12 15 18 21 0 30369121518210 (a) size of time lagreplied (local) time in time zones B

posted (local) tim
e in time zones A

7 17 16 2 5 3 2 00 9 7 5 3 2 2 00 0 9 13 9 8 4 10 2 2 61 80 24 12 21 8 5 6 57 35 17 06 13 11 3 4 54 57 14 39 11 3 0 1 30 124 42 7 3 7 2 2 6(b) num. of replies
3 6 9 12 15 18 21 0 30369121518210

Fig. 2. Distribution of posted and replied time

between 15 and 18. In this case, the time-lag is +3 hours and the number of
post/reply pairs is 80.

Time zones A and B are fixed after selecting target locations for analysis.
Time zones B in Fig.2 is arranged as replied messages within an hour correspond
to posted messages on the diagonal. In Fig.2, size of time-lag and the number
of posted/replied messages are counted by three hours, but the length may be
changed depends on analysis needs. Furthermore, the all cells in Fig.2(b) are
gray-scaled according to the number of posted/replied pairs of messages, to grasp
a big picture of time slots with a large or small number of replied messages.

Using Fig.2(a) and (b), it is possible to identify time slots with large or small
time-lag. For instance, we can see that messages posted between 21 and 0 in
time zones A (the bottom row in Fig.2) tend to be replied after 6 hours. That
is, to post messages from 21 to 0 would not be the appropriate timing for less
time-lag communications.

6 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

time zone (UTC)

n
u
m
.

o
f

r
e
p
l
i
e
s

-11 -9 -7 -5 -3 -1 1 3 5 7 9 11

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

Fig. 3. Distribution of the number of replied messages by time zones

3 Case Study

This section describes a case study with a mailing list for developers in the
Python project. Through the case study, we would like to confirm whether the
analysis method can help us understand the existence of time-lags in communi-
cations among OSS developers.

3.1 Python

Python is an object oriented script language developed by OSS. It is very popular
in Europe and the United States as well as Perl. Because it supports various
platforms and provides rich documentations and libraries, it is used in a broad
range of domains (e.g., Web programming, GUI-based appricaitons, CAD, 3D
modeling, formula manipulation, and so forth).

3.2 Target data

We selected the mailing list archive called“Python-Dev” which is for discussing
development of Python such as new features, release and maintenance. We use
the Python-Dev mailing list archive from April 1999 to April 2009, which have
89,301 messages. Excluding posted messages with no replies and messages with
no information on posted/replied time and locations, posted and replied mes-
sages were 56,707. 51,830 of 56,707 messages were sent within 24 hours.

A Time-Lag Analysis for Improving Communications among OSS Developers 7

Table 1. Target locations for the case study of Python

region time zone locations

North and South UTC-8～ United States, Canada, West of Brazil,
American continent UTC-4 Chile, Bolivia, Mexico, etc.

European and African UTC+0～ Europe, Africa, Moscow,
continent UTC+3 Iran, Saudi Arabia, etc.

num. of re
plies

0 2 4 6 8 10 12 14 16 18 20 220500
1000150
02000

UTC+0
UTC+2UTC-420 0 4 8 12 1622 2 6 10 14 182 6 10 14 18 224 8 12 16 20 0

○ North and South American continent● European and African continent

Fig. 4. Distribution of the number of replied messages by time slots (white circles:
North and South American continent, black circles: European and African continent)

3.3 Analysis results

Analysis of a geographical distribution and activity time. Fig.3 shows
a distribution of the number of replied messages by time zones. The X-axis and
Y-axis respectively mean time zones and the number of replied messages.

Fig.3 indicates that in the Python project, a large number of messages are
replied by developers from UTC-4 (East of the United States) and UTC+2 (cen-
tral Europe). This result is not surprising at all. Because Python is mainly used
and developed by European and American developers, it would be natural that
developers living in the locations actively communicated.

Many of countries in the locations of UTC-4 and UTC+2 is utilizing daylight-
saving time. And countries around the countries in UTC-4 and UTC+2 also have
many messages. So, we selected two regions around UTC-4 (the North and South
American continent: UTC-8～UTC-4) and UTC+2 (the European and African
continent: UTC+0～UTC+3) as the analysis target in this paper. Table 1 shows
major countries included in these regions.

8 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

Table 2. Statistics of time-lags by region (A: North and South American continent,
E: European and African continent)

posted region → replied region the number of maximum median minimum
replied region replies (hours) (hours) (hours)

A → A 18,901 11.55 1.24 0.00

A → E 6,942 16.34 2.07 0.00

E → E 9,426 14.69 1.59 0.00

E → A 7,215 13.91 1.80 0.00

Fig.4 shows transitions of replied messages by hour in the two regions which
are determined from Fig.3. The X-axes shows time in the three time zones
(UTC+0, UTC-4, UTC+2) and the Y-axis is the number of replied messages.

Fig.4 indicates that the maximum and minimum number of replied messages
from the North and South American continent are attained respectively at 13 and
5 in the local time (UTC-4). Python developers in the North and South Amer-
ican continent seem to mainly communicate during daytime hours. In contrast,
Python developers in the European and African continent actively communicate
during nighttime hours, because the number of replied messages from the Euro-
pean and African continent is peaked at 23 in the local time (UTC+2). In this
way, analyzing activity time of OSS developers by using the number of replied
messages helps us understand the existence of the difference of working hours
by region.

Although Fig.4 provides an overview on the difference of working hours of
OSS developers by region, however, it does not tell us anything about time-lags.
In fact, developers in the both regions actively communicate each other from
12 to 23 in UTC+0. Communication time-lags might not exist in the regions.
In contrast, developers in either one region or the other region does not ac-
tively communicate from 12 to 23 in UTC+0. Communication time-lags between
developers living different locations might exist in this time period.

Analysis of a distribution of time required for information exchanges
among OSS developers in different locations. Table 2 shows time spent
to reply messages to the same and different time zones, the number of replied
messages, and time-lags (maximum/median/minimum). A pair of a post from
location X and a reply from location Y is represented as “X → Y”.

The median hours of time-lag among the same time zone was 1.24 hours
for A → A and 1.59 hours for E → E. The median hours of time-lag between
the different time zones was 2.07 hours for A → E and 1.80 hours for E → A.
Developers in the same time zone can expect to have a reply within 90 minutes,
and developers between different time zones also can expect to have a reply
within about 2 hours. Since the actual difference of time-lag between the target
regions is nearly 6 hours, we can consider that communication time-lags in the
Python project is relatively small.

A Time-Lag Analysis for Improving Communications among OSS Developers 9

replied (local) time in the North and South American continent

posted (loc
al) time

in the Nor
th and Sou
th America
n continen
t

(a) American → American (max.: 375, min.: 0)

0 2 4 6 8 10 12 14 16 18 20 22 002468101214161820220

replied (local) time in the European and African continent

posted (loc
al) time

in the Nor
th and Sou
th America
n continen
t

(b) American → Europe and Africa (max.: 94, min.: 0)

6 8 10 12 14 16 18 20 22 0 2 4 602468101214161820220replied (local) time in the European and African continent

posted (loc
al) time

in the Euro
peanand A
frican con
tinent

(c) Europe and Africa → Europe and Africa (max.: 180, min.: 0)

02468101214161820220

0 2 4 6 8 10 12 14 16 18 20 22 0 replied (local) time in the North and South American continent

posted (loc
al) time

in the Euro
peanand A
frican con
tinent

(d) Europe and Africa → American (max.: 108, min.: 0)

18 20 22 0 2 4 6 8 10 12 14 16 1802468101214161820220
Fig. 5. Distributions of posted/replied local time between two regions

Analysis of appropriate timing for sending messages. Fig.5 (a), (b),
(c) and (d) are distributions of the number of replied messages between two
regions. For the simplicity, only gray-scaled figures without the number of replied
messages are shown in Fig.5. We can see that the zero time-lag (i.e., dark gray
cells near the diagonal line) is expected from 10 to 17 in Fig.5(a), from 9 to 17
in posted (local) time and from 15 to 23 in replied (local) time in Fig.5(b), from
16 to 23 in Fig.5(c), and from 16 to 23 in posted (local) time and from 10 to
17 in replied (local) time in Fig.5(d). For these time periods, developers would
timely communicate each other.

In contrast, reply time seems to be delayed from 18 to 23 in posted (local)
time in Fig.5(b) and from 7 to 13 in replied (local) time in Fig.5(d), because
there are darker cells a short distance away from the diagonal line. These two
posted (local) time periods correspond to the time period from midnight to early
morning （0 to 6) in replied locations, which means that developers in replied
locations was sleeping at the posted time.

From the result of Fig.5, in oder to receive a quick reply, it would be desirable
to post a message from 10 to 17 in the North and South American continent,
and from 16 to 23 in the European and African continent. On the contrary, it is
not appropriate timing to post a message from 18 to 23 in the North and South
American continent, and from 7 to 13 in the European and African continent,

10 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

since time-lag is likely to occur. In this way, our analysis method helps OSS
developers know the appropriate timing so that they can resolve a time-lag of
information exchange in an OSS project as much as possible.

4 Discussions

Opposite to what we expected before our case study, we have confirmed in Table
2 that the influence of time-lag due to the time zone difference was relatively
small in the Python project. One reason of this phenomena might be that active
time of Python developers is partly overlapping in the two regions. Although
there are about 6 hours time-zone difference between the two regions, the active
time in the North and South American continent was different from that in the
European and African continent as shown in Fig.4. Therefore, active hours of
Python developers in the two regions might overlap by coincidence from 10 to
17 in the North and South American continent (from 16 to 23 in the European
and African continent). Another reason may be that the number of Python
developers subscribed to the “Python-Dev” mailing list is sufficiently-large to
quickly respond to a posted message at any time.

Our analysis method is not only useful in knowing the appropriate timing
for communications among geographically-distributed OSS developers, but also
useful in changing communication media used in an project. For instance, when a
project replaces mailing lists with IRCs (Internet Relay Chat) as communication
media, developers would be required to more precisely understand the appro-
priate timing for communications to resolve time-lag. In that case, our method
would help developers know the better timing for real-time communications.

OSS developers are not necessary to be geographically-distributed, but they
may be at the same region or location. Though our analysis method mainly aims
to understand the communication time-lag arising from time-zone differences, it
can be used for the time-lag due to lifestyle differences of OSS developers in the
same region or location. OSS developers have no constraint on their working
hours and they can freely engage in OSS development. At the same region, some
developers can work in the morning and other developers can develop OSS at
midnight. Depending on the differences of lifestyles of developers, time-lags could
happen even if they live close to each other. In this situation, our method can
provide an insight on the differences of active time in the same region and help
developers understand the appropriate timing for sending messages.

The analysis method also can be used for distributed development in a com-
pany. Working hours in a company are fixed to some extent, but it is not nec-
essarily that a developer in one site can communicate with other developers in
another site at a particular time. In the prior study [3], time zone differences
are visualized to understand and exploit overlapping hours in a distributed en-
vironment. Our method can not only visualize the time zone differences, but
also allows developers to understand the easiness of communication at a partic-
ular time period, using the number of replied messages (i.e., density of working
activity at a particular time period).

A Time-Lag Analysis for Improving Communications among OSS Developers 11

In this paper, we introduce the time-lag analysis method toward improving
the communication efficiency of geographically-distributed OSS developers. The
analysis method targets mailing list archive data as communication logs to reveal
the existence of communication time-lags. Although IRC communications are
often used in OSS projects and they can be our analysis target, communications
using IRC do not work when developers one wishes to talk are off-line. So, IRC
communication logs are not likely to well-capture communication time-lags.

In this paper, we have conducted a case study of the Python project, using the
“Python-Dev” mailing list archive. Python-Dev consists of about 10 years mail-
ing list archive data. So, it might be too large to show communication time-lags
among Python developers at the fine-grained level. Actually, we have observed
that communication time-lags in the Python project were relatively small. We
suspect that this results from the size population of developers (subscribers) of
Python-Dev. In Python-Dev[4], a posted messages must be read by a number
of developers in the world and so it might be easy to have replies. In order to
emphasize the existence of time-lags and its issues, in the near future, we need
to analyze more specific situations such as the level of communications among
module owners, reviewers and patch contributors.

5 Related Work

The issues on communication time-lag or delay in OSS development have been
intensively studied in relation to bug modification processes with bug tracking
systems in open source projects [5–15]. For instance, Wang et al. proposed sev-
eral metrics to measure the evolution of open source software [14]. The metrics
include the number of bugs in software, the number of modified bugs and so
on. As a result of a case study using the Ubuntu project which is one of Linux-
based operating system distributions, the study found that about 20% of all the
reported bugs were actually resolved and over ten thousand bugs were not as-
signed to developers. These findings indicate that it takes a long time to resolve
all bugs reported into bug tracking systems and that it also takes a long time to
start modifying bugs. The study, however, did not reveal the amount of time or
communication time-lags to resolve bugs.

Mockus et al. [12] and Herraiz et al. [7] have reported studies on the mean
time to resolve bugs in open source software development. Mockus et al. [12] have
conducted two case studies of the Apache and Mozilla projects to reveal success
factors of open source software development. In the case studies, they analyzed
the mean time to resolve bugs because rapid modifications of software bugs are
generally demanded by users. As a result of the analysis, they have found that
the mean time to resolve bugs were short if bugs existed in modules regarding
to kernel and protocol, and existed in modules with widely-used functions. They
also found that 50% of bugs with the priority P1 and P3 were resolved within
30 days, 50% of bugs with P2 were resolved within 80 days, and 50% of bugs
with P4 and P5 were resolved within 1000 days. While [12, 7] mainly focused on
precise understandings of bug modification processes in open source software de-

12 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

velopment, we are interested in the influence of communication time-lags among
developers on the bug modification process.

The issues on differences of time-zone and/or geographical distance in dis-
tributed development rather have been discussed in terms of the context of
corporate (proprietary) software development [16–20]. For instance, Harbsleb
et al. [18] have compared single-site development with milti-sites development
and then revealed that development in the distributed environment introduced
the delay of development speed. In contrast, Bird et al. [21] analyized the de-
velopment of Windows Vista by comparing distributed teams with collocated
teams from the aspect of the post-release failures of components. They have
found a slight difference in failures, but the difference have been less signifi-
cant. Nguyen et al. [22] also reported the similar phenomena in the Eclipse Jazz
project. Although the lessons learned from these studies on distributed software
development provides us a lot of useful insights, they are partly applicable to
geographically-distributed OSS development due to the differences of lifestyles of
developers even in the same region or location. In this paper, we tried to tackle
this unique feature of time-lags in OSS development.

6 Conclusion and Future Work

In this paper, we proposed an analysis method for observing the time-lag of com-
munications among developers in an OSS project and then facilitating effective
communications. As the results of our case study applying the analysis method
to the Python developers’ mailing list archive, we could confirm that our analysis
method helps geographically-distributed OSS developers understand that

– active time of developers are different from regions,
– communication time-lags in the Python project is relatively small, and
– there exists the appropriate timing for resolving communication time-lags as

much as possible.

In this paper, our analysis method targets communication time-lags in the
two regions with the time zone difference. In the future, we need to analyze
regions and/or locations without time zone differences in order to better un-
derstand the influence of lifestyle differences of developers on communication
time-lags. As described before, we still need to analyze more specific situations
of time-lags at the fine-grained level.

7 Acknowledgment

This research is being conducted as a part of the Next Generation IT Program
and Grant-in-aid for Young Scientists (B)–20700028, 21–8995，20–9220 by the
Ministry of Education, Culture, Sports, Science and Technology, Japan.

A Time-Lag Analysis for Improving Communications among OSS Developers 13

References

1. Robles, G., Gonzalez-Barahona, J.M.: Geographic location of developers at source-
forge. In: Proceedings of the International Workshop on Mining Software Reposi-
tories. (2006) 144–150

2. Python Programming Language – Official Website: http://www.python.org/

3. Laredo, J.A., Ranjan, R.: Continuous improvement through iterative development
in a multi-geography. In: 2008 IEEE International Conference on Global Software
Engineering. Volume 0., Los Alamitos, CA, USA, IEEE Computer Society (2008)
232–236

4. Python-Dev – Python core developers ML: http://mail.python.org/mailman/
listinfo/python-dev

5. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmermann, T.:
What makes a good bug report? In: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering(FSE’08). (2008)
308–318

6. Godfrey, M.W., Tu, Q.: Evolution in open source software: A case study. In:
Proceedings of the International Conference on Software Maintenance(ICSM’00).
(2000) 131–142

7. Herraiz, I., German, D.M., Gonzalez-Barahona, J.M., Robles, G.: Towards a simpli-
fication of the bug report form in eclipse. In: Proceedings of the 2008 international
working conference on Mining software repositories (MSR’08). (2008) 145–148

8. Ihara, A., Ohira, M., Matsumoto, K.i.: An analysis method for improving a bug
modification process in open source software development. In: IWPSE-Evol ’09:
Proceedings of the joint international and annual ERCIM workshops on Princi-
ples of software evolution (IWPSE) and software evolution (Evol) workshops, New
York, NY, USA, ACM (2009) 135–144

9. Kim, S., Pan, K., Whitehead, Jr., E.E.J.: Memories of bug fixes. In: Proceedings
of the 14th ACM SIGSOFT international symposium on Foundations of software
engineering(FSE’06). (2006) 35–45

10. Kim, S., Zimmermann, T., Pan, K., Whitehead, E.J.J.: Automatic identification
of bug-introducing changes. In: Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering(ASE’06). (2006) 81–90

11. Kim, S., Whitehead, Jr., E.J.: How long did it take to fix bugs? In: Proceedings of
the 2006 international workshop on Mining software repositories(MSR’06). (2006)
173–174

12. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source soft-
ware development: Apache and mozilla. ACM Transactions on Software Engineer-
ing and Methodology 11(3) (2002) 309–346

13. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In:
Proceedings of the 2005 international workshop on Mining software repositories
(MSR’05). (2005) 1–5

14. Wang, Y., Guo, D., Shi, H.: Measuring the evolution of open source software
systems with their communities. SIGSOFT Softw. Eng. Notes 32(6) (2007) 7

15. Yilmaz, C., Williams, C.: An automated model-based debugging approach. In:
Proceedings of the twenty-second IEEE/ACM international conference on Auto-
mated software engineering. (2007) 174–183

16. Carmel, E.: Global software teams: collaborating across borders and time zones.
Prentice Hall PTR, Upper Saddle River, NJ, USA (1999)

14 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

17. Karolak, D.W.: Global Software Development: Managing Virtual Teams and En-
vironments. IEEE Computer Society Press, Los Alamitos, CA, USA (1999)

18. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: An empirical study of
global software development: distance and speed. In: Proceedings of the Interna-
tional Conference on Software Engineering. (2001) 81–90

19. Milewski, A.E., Tremaine, M., Egan, R., Zhang, S., Kobler, F., O’Sullivan, P.:
Guidelines for effective bridging in global software engineering. In: Proceedings of
the International Conference on Global Software Engineering. (2008) 23–32

20. Sangwan, R., Bass, M., Mullick, N., Paulish, D.J., Kazmeier, J.: Global Software
Development Handbook (Auerbach Series on Applied Software Engineering Series).
Auerbach Publications, Boston, MA, USA (2006)

21. Bird, C., Nagappan, N., Devanbu, P., Gall, H., Murphy, B.: Does distributed
development affect software quality? an empirical case study of windows vista. In:
ICSE ’09: Proceedings of the 2009 IEEE 31st International Conference on Software
Engineering, Washington, DC, USA, IEEE Computer Society (2009) 518–528

22. Nguyen, T., Wolf, T., Damian, D.: Global software development and delay: does
distance still matter? In: Proceedings of the International Conference on Global
Software Engineering. (2008) 45–54

