
An Analysis of Committers toward Improving the Patch Review Process
in OSS development

Shoji Fujita, Masao Ohira, Akinori Ihara and Ken-ichi Matsumoto
Graduate School of Information Science, Nara Institute of Science and Technology, JAPAN

{shoji-f, masao, akinori-i, matumoto}@is.naist.jp

Abstract—In recent years, individual and business users have
made widespread use of Open Source Software (OSS) products.
As OSS products have become important for the modern
society, users expect OSS developers to fix existing bugs in
the products as soon as possible. The goal of our study is to
develop a better understanding of the patch review process in
OSS development and to provide insight on how to elect an
appropriate developer as a committer who will have a great
impact on the quality of OSS products. We conducted a case
study of the PostgreSQL project to look at an actual patch
review process and how committers contribute to the patch
review process. As a result of this case study, we found that
there are significant differences between committers and non-
committers in the number of patch reviews and edits. We also
found committers tend to review and edit patches many times,
but are not always speedy about reviewing and editing patches.

Keywords-open source software (OSS); committer; patch
review process

I. I NTRODUCTION

In recent years, not only individual but also business users
have made widespread use of Open Source Software (OSS)
products. As OSS products have become important for the
modern society, users expect OSS developers to fix existing
bugs in the products as soon as possible. In general, the
modifications to fix existing bugs are carried out as follows;

1) A developer or a user finds a bug in an OSS product
and then reports it to a mailing list (ML) or bug
tracking system (BTS) managed by the OSS project
which has been developing the OSS product.

2) The developers on the project read the bug report and
then create a patch (source code diff) to correct the
bug and submit the patch to the ML or BTS.

3) Other (mostly core) developers review the submitted
patch to confirm the correctness of the patch.

4) If the core developers in the project verify the patch,
it is finally “patched” (applied) to the product.

Since some OSS projects receive a large number of bug
reports every day [2], improvement of the bug modification
process is a growing concern for OSS projects and their
users. To support the bug modification process in OSS
projects, many studies have tried to paint a precise picture
of the process[3]. For instance, regarding (1) above, [4][5]
investigated how to write a good bug report which makes bug
modification easier. Regarding (2), [6] revealed relationships

between size and acceptance rate of patches submitted by
OSS developers.

However, there are few studies on (3) and (4) above,
that is, the review process of patches. Sometimes, submitted
patches are neglected due to the limited number of devel-
opers in OSS project [7]. Even if they are reviewed and
verified, the bug report itself often is not closed [1]. This
means that a bug reporter cannot know if patches for a
bug fix were actually applied to the product. So, it is also
important in improving the bug modification process to make
the patch review process more efficient and transparent.

In this paper, we analyze how submitted patches are
reviewed and finally applied to OSS products. We focus
especially on the differences in performance between com-
mitters and non-committers (normal developers). Here, a
“committer” is defined as a developer who has write permis-
sion to a source code repository in a version control system
such as CVS or Subversion. Committers can directly change
source code in the repository by applying verified patches
to existing source code. Most OSS projects have several
or more committers to disperse workloads for modifying
OSS products. Increasing the number of committers allows
OSS project to skip patch reviews to some extent because a
committer can directly modify source code in the repository.
It also reduces the time from patch submission to patch
commitment because workloads for patch reviews are more
dispersed between committers.

Normally, a developer is selected as a committer, through
nomination from other committers and/or core members, as a
result of admirable contributions to the project. Depending
on the state of the project, members of the project need
to carefully choose a new committer because the role of
committer can have a great impact on the progress of
the project. Therefore, it has not been easy to elect an
appropriate developer as a committer from a number of
developers.

We conducted a case study of the PostgreSQL project to
look at an actual patch review process and how committers
contribute to the patch review process. The main contribu-
tions of our analysis in this paper are to develop a better
understanding of the patch review process in OSS develop-
ment and, based on our analysis, to provide an insight on
how to select an appropriate developer as a committer. We

369

Developer
Committer

Source code repository
Review

Patch editCreate a patch
Patch submission

Review time Review timePatch edit time

ReviewFeedback
Commit

Patch submission Feedback
Commit

Figure 1: Patch Review Process

believe our findings will help OSS projects increase good
committers, which would result in improvement of the patch
review process.

In the following section, we describe the outline of the
patch review process and define the terms used in this
paper. Section III presents the research questions we have
to answer in this paper. Section IV explains our analysis
method. Section V shows the results for the case study of
the PostgreSQL project. Section VI discusses the results.
Section VII concludes our study and describes some ideas
for future work.

II. PATCH REVIEW PROCESS INOSS DEVELOPMENT

This section describes an overview of the patch review
process in OSS project and defines terms we use in this
paper.

As described before, modification of OSS products is
carried out by applying patches to existing source code.
Figure 1 shows the patch review process where first a patch
is submitted, then reviewed, accepted/rejected and finally
applied to source code. In Figure 1, the horizontal line shows
the time line in the process and the vertical line shows
the actors who appear in the patch review process. In this
paper we define “committer” as a developer who has commit
permission, “non-committer” as a developer who does not
have commit permission. We use “developer” when we do
not distinguish committers and non-committers.

The patch review process basically consists of three steps:

1) One or more developers review the patch submitted
by a developer to check if it is correct for removing
bugs.

2) When the correctness of the patch is confirmed, a
committer applies the patch to the corresponding
source code and commits the patch to the source code
repository.

3) When the patch is judged as not appropriate, a com-
mitter gives feedback to the developer who submitted
the patch. The developer can then edit/rewrite and
submit the patch again.

In Figure 1 the patch review process is defined as an
iteration of two phases: Patch Review Time (PRT) and Patch
Edit Time (PET).PRT is the time from patch submitted
to patch confirmed as appropriate or the time from patch
submitted to feedback given to a developer.PET is the time
from feedback given to edited patch re-submitted.

III. R ESEARCHQUESTIONS

In this paper we examined the following research ques-
tions to obtain better understanding of the patch review pro-
cess in OSS development and the differences in performance
between committers and non-committers.

RQ1 Is there any difference of PRT and PET between
committers and non-committers?

RQ2 Is there any difference in the number of patch
reviews and edits between committers and non-
committers?

RQ3 Is there any difference in performance between
committers in the patch review process?

As described earlier, a developer is selected as a com-
mitter, through nomination by other committers and/or core
members. To be nominated as a committer, s/he is expected
to show active involvement in the project for a certain period.
For instance, s/he has to actively join discussions in the
project mailing list, submit a number of quality patches, and
so forth.

So we may expect that the performance of committers
in the patch review process is very different from that of
non-committers. However, there are no explicit criteria to
nominate a developer as a committer in most OSS projects.
RQ1 and RQ2 were set up to understand the extent to which

370

mail01 [From : A] :______________mail02[From : B] : Re:______________mail03 [From : A] : Re: Re:______________mail04 [From : C] : Re:______________
patch01.c patch02.cmail05 [From : D] : Re:______________ patch03.c ID Submit Time Name Contain Patchmail01 2010/4/20 9:55 A Yesmail02 2010/4/20 13:18 B Nomail03 2010/4/20 15:53 A Yesmail04 2010/4/20 21:40 C Nomail05 2010/4/21 2:38 D Yes

Submit Message Information Reply Message Information Time ActionID Submit time Name ID Reply time Name （minutes）mail01 2010/4/20 9:55 A mail02 2010/4/20 13:18 B 203 Reviewmail02 2010/4/20 13:18 B mail03 2010/4/20 15:53 A 155 Patch editmail01 2010/4/20 9:55 A mail04 2010/4/20 21:40 C 705 Reviewmail01 2010/4/20 9:55 A mail05 2010/4/21 2:38 D 1003 Patch edit

(a) The relationship between posted and replied massages (b) Classifying messages
(c) Information converted table

Figure 2: Procedure for Data Collection

the performance of committers and that of non-committers
are different. And then we would like to find such the criteria
in answering the questions.

Also, we would like to know about differences in perfor-
mance among committers. We suppose there are a variety
of ways in which committers contribute to the patch review
process. For instance, one committer may submit a lot of
quality patches and another committer may quickly review
other developers’patches and always give good feedback
to them. By the same token, OSS projects may also have
different needs for committers, because one project may face
a lack of reviewers and another project may need more patch
submissions. RQ3 was set up to understand the distribution
of the differences of the performance between committers.
If we can find such differences in performance between
committers, we might be able to make a predictive model
to suggest a candidate developer as a committer suitable to
each project situation.

IV. A NALYSIS

To answer the three research questions, in this paper,
we analyze the patch review process, measuring PRT, PET,
the number of patch edits and patch reviews. This section
explains the data collection and our analysis method.

A. Data Collection

We collected the analysis data from the BTS or ML
archives used in OSS development.　 Figure 2 shows the
procedure for the data collection. Figure 2(a) shows the
relationship between posted and reply messages in ML
archive. If a message contains a patch, the filename of the
patch is on the right side of the message. Figure 2(b) shows
a table for classifying messages into messages with/without
patches. Figure 2(c) shows a converted table using the
information Figure 2(a) and (b).

When developer A posts the message “mail01” with the
patch “patch01.c” and developer B replies to that message
by “mail02”, “mail02” is defined as a feedback to the patch
and defined that developer B reviewed the patch. In this
case, PRT is calculated as the time from “mail01” posted
to “mail02” replied. On the other hand, when developer D
replies “mail05” with “patch03.c” to “mail01”, developer D
is defined that s/he has edited the patch “patch01.c”. In this
case, PET is calculated as the time from “mail01” posted to
“mail05” replied. In this paper, we analyze posted and reply
messages with patches, and analyze committers who can
be identified in version control system, ML and BTS (i.e.,
committers who use the same account name in the systems).

B. Method

1) RQ1:PRT and PET:We collected the data of PRT and
PET and calculate the median time of them for each devel-
oper. After that we used Mann-Whitney’s U-test to see if
there is a significant difference of time between committers
and non-committers. We only target the developers who have
edited patches and/or reviewed more than 5 times.

2) RQ2：Number of Patch Reviews and Edits:We col-
lected the data of the number of patch reviews and edits and
calculated the median number of them for each developer.
Then we used Mann-Whitney’s U-test to see if there
is a significant difference between committers and non-
committers.

3) RQ3：Committer’s Patch Reviews and Edits:We define
the criteria of PRT, PET, the number of patch reviews and
edits, using all developers’ data. After that we classify
committers by the criteria and analyze the differences in
performance among committers.

V. CASE STUDY

This section presents our case study of the PostgreSQL
project to answer the research questions.

371

Figure 3: Patch Review Time (left) and Patch Edit Time (right)

Figure 4: Number of Patch Reviews (left) and Number of Patch Edits (right)

A. Target Data

PostgreSQL is a widely used object-relational database
management system. The analysis period was from January
2001 to December 2008 and we used two MLs “pgsql-
hackers” and “pgsql-patches” for the target data. We could
identify 14 committers who existed during the analysis
period. We also could find 214 developers who reviewed
patches and 146 developers who edited patches.

B. Results

1) RQ1：PRT and PET:Figure 3 shows distribution of
PRT for committers and non-committers. In Figure 3 a box
on the left shows distribution of PRT for committers and
a box on the right is for non-committers. The vertical axis
shows the median PRT and is converted into a logarithmic
scale.There are 64 developers (14 committers and 50 non-
committers) in Figure 3. Table I shows the median, average,
standard deviation of PRT for the whole developers, non-
committers, and committers. From the table, we cannot see
a big difference of median PRT between committers and
non-committers. The result of Mann-Whitney’s U-test be-
tween committers and non-committers shows no significant
difference (p=0.65 (>0.05)).

Figure 3 shows distribution of PET for committers and
non-committers. In Figure 3 a box on the left shows distribu-
tion of PET for committers and a box on the right is for non-
committers. The vertical axis shows the median PET and is
converted into a logarithmic scale. There are 50 developers
(14 committers and 36 non-committers) in Figure 3. Table II
shows the median, average, standard deviation of patch edit
time for whole developers, non-committers, and committers.
From the table, the median of committer’s PET seems to
be shorter than non-committer’s one. However, the result
of Mann-Whitney’s U-test between committers and non-
committers shows there is no significant difference (p= 0.48
(>0.05)).

2) RQ2：Number of Patch Reviews and Edits:Figure
4 shows distribution of the number of patch reviews for
committers and non-committers. In Figure 4 a box on the
left shows distribution of the number of patch reviews for
committers and a box on the right is for non-committers. The
vertical axis shows the median number of patch reviews and
is converted into a logarithmic scale. There are 214 develop-
ers (14 committers and 200 non-committers). Table III shows
the median, average, standard deviation of the number of
reviews for the whole developers, non-committers, and com-

372

Table I: Statistics of Patch Review Time

PRT All developers non-committers committers
Developers 64 50 14
Median 507.50 (2.71) 507.50 (2.71) 533.00 (2.72)
Average 1479.07 (3.17) 1579.25 (3.20) 1121.29 (3.05)
Standard dev 3572.63 (3.55) 3875.23 (3.59) 2132.97 (3.33)

Table II: Statistics of Patch Edit Time

PET All developers non-committers committers
Developers 50 36 14
Median 411.00 (2.61) 324.50 (2.51) 583.00 (2.77)
Average 1188.88 (3.07) 1394.47 (3.14) 660.21 (2.82)
Standard dev 3317.03 (3.52) 3877.61 (3.59) 493.46 (2.69)

Table III: Statistics of the number of Patch Reviews

Patch Reviews All developers non-committers committers
Developers 214 200 14
Median 2.00 (0.30) 1.00 (0.00) 35.00 (1.54)
Average 15.55 (1.19) 10.56 (1.02) 86.93 (1.94)
Standard dev 100.93 (2.00) 99.65 (1.99) 91.79 (1.96)

Table IV: Statistics of the number of Patch Edits

Patch Edits All developers non-committers committers
Developers 146 132 14
Median 2.00 (0.30) 1.00 (0.00) 34.50 (1.54)
Average 12.62 (1.10) 8.24 (0.92) 53.93 (1.73)
Standard dev 50.24 (1.70) 48.33 (1.68) 49.18 (1.69)

mitters. From the table, the median number of committer’
s reviews is much more than non-committer’s. The result
of Mann-Whitney’s U-test between committers and non-
committers shows a significant difference (p=0.00 (<0.05)).

Figure 4 also shows distribution of the number of patch
edits for committers and non-committers. In Figure 4 a
box on the left shows distribution of the number of patch
edits for committers and a box on the right is for non-
committers. The vertical axis shows the median number of
patch edits and is converted into a logarithmic scale. There
are 146 developers (14 committers and 132 non-committers).
Table IV shows the median, average, standard deviation of
the number of patch edits for the whole developers, non-
committers, and committers. From the table, the median
number of committer’s patch edits is much more than
non-committer’s. The result of Mann-Whitney’s U-test
between committers and non-committers shows a significant
difference (p=0.00 (<0.05)).

3) RQ3：Committer’s Patch Reviews and Edits:Figure
5 shows the relationship between committer’s PRT and
PET. The horizontal axis shows PET and the vertical axis
shows PRT. The horizontal line and vertical line in the
figure show the median time of each PRT (508minutes) and
PET (411minutes) as criteria. We classified committers using

Figure 5: Committer Classification by the Patch Review
Time and Patch Edit Time

Figure 6: Committer Classification by the Number of Patch
Reviews and Edits

criteria and the results show that there are 5 committers
with longer PRT and PET, 4 committers with shorter PTR
and longer PET, 3 committers with longer PRT and shorter
PET, and 2 committers with both shorter PRT and PET. The
results indicate that committers have a variety of PRT and
PET.

Figure 6 shows the relationship between the number of
patch reviews and edits by committers. The horizontal axis
shows the number of patch edits and the vertical axis shows
the number of reviews. The horizontal line and vertical line
in the figure show the median number of reviews (2 times)
and patch edits (2 times) as criteria.

From the results of classification by criteria, there are all
14 committers with more number of patch reviews and edits
than the criteria.

VI. D ISCUSSIONS

In answering RQ1, we found that there is no big difference
of PRT and PET between committers and non-committers.
This could be because OSS development does not require
a deadline and developers do not necessarily have to do a
quick patch review and edit all the way along, even if they

373

are committers who have a large effect on the productivity
and quality of OSS products.

In answering RQ2 and RQ3 (in particular, the relationship
between the number of reviews and edits by committers),
we found that committers tend to have more patch reviews
and edits than non-committers. The results suggest that
committers in the PostgreSQL project win the admiration of
their contributions in terms of the number of patch reviews
and edits.

These results were not surprising to us, but a part of
the results of RQ3 was unexpected. We found that the
committers in the PostgreSQL project are not always speedy
at reviewing and editing patches, and more than half number
of the committers tend to take longer time for editing patches
than criteria. This might happen because PostgreSQL is a
database software product for which high reliability and per-
formance are required. The PostgreSQL committers might
have to be very careful to create quality patches.

For confirmation, we looked closely at the committer with
the longest PRT in Figure 5 and found that he is a member
of the PostgreSQL main contributors and the largest number
of commits are done by him. He is likely to take a long time
to take care of many patches. This could be the reason why
his PRT is longer than other committers.

The findings imply that committers can contribute to OSS
projects even if they have long PRT and PET. Not only the
number of patch reviews and edits but also PRT/PET have
to be evaluated to select a committer depending on the state
of the project and/or product properties.

In this paper, we describe a case study of the PostgreSQL
project, but we are aware of the weakness in the generality of
our findings. The PostgreSQL project always has a restricted
number of committers which is one of unique aspects of the
project, but other OSS projects do not need to have such the
restriction. Also, the PostgreSQL project uses a mailing list
for patch submissions, but others often use a bug tracking
system. These differences between PostgreSQL and other
projects are likely to influence the results of our analysis.
We have to investigate other projects in the future.

Due to the space limitation, in this paper we did not
focus on the difference of the acceptance rate of patches
between committers and non-committers. In order to choose
an appropriate developer as a committer, the ability to create
quality patches should be considered. We need to analyze
this aspect of the patch quality in the future.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, to improve the patch review process in OSS
projects, we analyzed differences in performance between
committers and non-committers in the PostgreSQL project.
From the case study of PostgreSQL, we could determine:

• There are no significant differences between committers
and non-committers for PRT and PET.

• There are significant differences between committers
and non-committers for the number of patch reviews
and edits.

• Committers tend to review and edit patches many times,
but are not always speedy at reviewing and editing
patches.

In future work, we should consider patch quality such as
the number of bugs included in a patch and readability of a
patch. We should also count the number of patch reviews and
edits per specific period of time to investigate contributions
for each developer. In addition we would like to show the
criteria for selecting committers who will keep contributing
to the patch review process in the future.

ACKNOWLEDGMENT

We appreciate the anonymous reviewers giving insightful
comments and helpful suggestions.

This research is being conducted as a part of the Next
Generation IT Program and Grant-in-aid for Young Scien-
tists (B), 22700033, 2010 by the Ministry of Education,
Culture, Sports, Science and Technology, Japan.

REFERENCES

[1] A. Ihara, M. Ohira and K. Matumoto,An Analysis Method
for Improving A Bug Modification Process In Open Source
Development, In 10th International workshop on principles of
software evolution (IWPSE2009), pp.135-143, 2009.

[2] B. Hailpern and P. Santhanam,Software debugging, testing,
and verification, IBM Systems fournal, pp.4-12, 2002.

[3] C. Jensen and W. Scacchi,Role Migration and Advancement
Processes in OSSD Projects: A Comparative Case Study,
Proceedings of the 29th International conference on software
engineering (ICSE2007), pp.364-374, 2007.

[4] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj and
T. Zimmermann,What makes a good bug report, Proceed-
ings of the 16th ACM SIGSOFT International symposium on
foundations of software engineering (SIGSOFT2008/FSE-16),
pp.308-318, 2008.

[5] P. Hooimeijer and W. Weimer,Modeling bug report quality,
Proceedings of the 22nd IEEE/ACM International confer-
ence on automated software engineering (ASE2007), pp.34-43,
2007.

[6] P. Weisgerber, D. Neu and S. Diehl,Small patches get in!,
Proceedings of the 5th International workshop on mining
software repositories (MSR2008), pp.67-76, 2008.

[7] Y. Wang, D. Guo and H. Shi,Measuring the evolution of
open source software systems with their communities, ACM
SIGSOFT Software Engineering Notes, Vol.32, No.6, p.7,
2007.

374

