
A System for Information Integration between
Development Support Systems

Soichiro Tani1 Akinori Ihara1 Masao Ohira1 Hidetake Uwano1,2 Ken-ichi Matsumoto1
1Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara, JAPAN

+81-743-72-5318
2Nara National College of Technology
22 Yata,Yamatokoriyama,Nara,JAPAN

+81-743-55-6000

{ soichiro-t, akinori-i, masao, matumoto } @ is.naist.jp, uwano @ info.nara-k.ac.jp

ABSTRACT
Many software projects use dezvelopment support systems such
as bug tracking system (BTS) or version control system (VCS) to
manage development information. Such the support systems
preserve information according to a type of information (e.g., bug
information in BTS and change information of source code in
VCS). Since the systems do not provide developers with a feature
to integrate several types of information required to complete
development tasks, the developers need to collect the information
by themselves that would result in inefficient development. In this
paper, we demonstrate a system called SUSHI that helps
developer integrate the information between multiple
development support systems. Our system collects information
which belongs to the same development context and provides
developers with hyper links to related information in the support
systems. Since our system also runs as a proxy server, developers
can continue to use existing systems and stored information
without any conversion.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – software
configuration management, software quality assurance,
programming teams.

General Terms
Management

Keywords
information sharing, development context, bug tracking system,
version control system

1. INTRODUCTION
With increasing outsourcing of software development or open
source software projects, developers need to collaborate with
geographically distributed co-workers and share information
between them. In such the environment, they communicate each
other to share information with asynchronous communication
tools/systems such as mailing list (ML), bug tracking system
(BTS) or version control system (VCS) that we call development
support systems (DSS) in this paper.

In a large-scale software development organization, several DSSs
are often integrated into a single system in order to optimize the
efficiency of collaboration and information sharing among
developers. The optimized integration of DSSs helps developers
find and understand the past and current progress of development
is dispersed in each DSS.

Meanwhile, a small-scale organization and open source software
project does not have the integrated DSSs because they do not
afford to build it by themselves or buy it. They often use a rental
hosting service such as sourceforge.net that can be used at no fee.
In case of using a rental hosting service, it is difficult to
change/modify each DSS and composition of DSS to make the
performance of information sharing better. Each developer needs
to search several kinds of information in DSSs to understand the
development context. For instance, when a developer receives a
new patch via ML, s/he has to find a bug report which asks
developers to make a patch to fix a certain bug, understand
discussions about the bug on ML and BTS, and identify a file or
module in VCS to apply the patch, and commit it into VCS. As
just described, using DSSs as a combination of independent DSS
sometimes consumes developers’ time and effort [1, 2].

In order to resolve the issue on the use of DSSs in a small
organization, in this paper we propose a system called SUSHI that
supports information integration between multiple DSSs without
changing in-use independent DSS in the organization. Our system
serves as a proxy server which detects user’s access to DSSs,
collects the same information that the user refers to, and make an
association with several kinds of the referred information in
multiple DSSs. Using the association of development information,
the next developer can easily find information relevant to his tasks.

2. SUSHI: INTEGRATING INFORMATION
BETWEEN MULTIPLE DSSs

2.1 Overview
Figure 1 shows the information flow in using SUSHI. SUSHI
works as a proxy server, collects information from BTS, and
provides users with related information while the users look for
information in each DSS through a web browser. Due to this
configuration, SUSHI can deal with several kinds of information

Figure 1. Information flow in SUSHI.

HostA

BTS

HostB

VCS

HostC

ML

Browser

SU
SHI

Local

network

33

in multiple DSSs. At the same time, the users of SUSHI are not
required to intentionally operate SUSHI to have information
relevant to the development context.

2.2 Architecture of SUSHI
Figure 2 shows the architecture of SUSHI. SUSHI has four
components: (1) Access Detector, (2) Data Collector, (3)
Estimator, and (4) Formatter.

Access Detector automatically detects user’s access to DSSs and
notifies Data Collector of what information are browsed by the
user. At this moment, Access Detector eliminates information
irrelevant to DSSs such as web searching results.

Data Collector collects information in DDSs that the user referred
to and sends them to the internal database. More importantly, it
also extracts information which is used in Estimator to estimate
which information are related each other. In the current
implementation, Data Collector of SUSHI gathers bug ID,
reporter’s name, reported time and descriptions of a reported bug
from BTS, revision number, committer’s name, commit message
and name of committed file from VCS, and poster’s name, posted
time, message ID and etc. from ML.

Estimator estimates the development context which consists of
several events around the same time. Estimator makes an
association with several kinds of information using such the
events recorded in DSSs. The next subsection describes Estimator
in detail.

Formatter provides a web page (html) which has the original
information that the user is about to browse and relevant
information from other DSSs. The user can browse several kinds
of relevant information at a time to understand the development
context.

2.3 Procedure of Estimation
In Estimator, making an association with relevant information,
that is, estimating the development context is conducted as
follows.

1. Developers specify characteristic words which are often
used in their project.

2. Estimator counts the number of the specified
key/characteristic words used in both the information that a
user is browsing and the information that SUSHI’s database
has already stored.

3. Estimator calculates the used rate of a specified word by
dividing the number of the specified word used in each
information by the total number of all the specified words
used in each information.

4. Estimator calculates the estimated score by squaring the
difference of the used rate between the information that a
user is browsing and the information in SUSHI’s database.

5. Estimator considers combinations of the information with
lower estimated score as relative information each other.

3. PRELIMINARY EVALUATION
So far, we have applied SUSHI to two small-scale open source
projects to confirm if the system works properly as we intended.
Due to the space limit, we introduce a summary of the preliminary
evaluation.

We asked open source developers to make links between
information recorded in several DSSs to define which information
is relevant each other. We also applied SUSHI to DSSs used in
their projects and extracted links which were created by SUSHI.
Comparing links manually defined by the developers with the
links created by SUSHI, we found that the links (BTS→BTS,
VCS→BTS, and VCS→VCS) created by SUSHI covered over
50% of the links defined by the developers. However, we also
found that the links (BTS→CVS) less matched the developers’
links (17%). This result showed that finding and recovering the
missing links [3] are still difficult in our system.

4. FUTURE WORK
In the current, SUSHI only shows a simple output with estimated
relevant information to uses. We need to consider more user-
friendly user interface and visualization as uses can easily
understand and remember the development context. We also
improve the estimation algorism for relevant information. The
current algorism is too simple to estimate relevant information
correctly. Although the preliminary evaluation showed good
results basically, we believe we can enhance the algorism (e.g.,
using TF-IDF) to make developers’ information retrieval much
more efficient.

5. ACKNOWLEDGMENTS
This work was conducted as part of StagE Project (the
Development of Next Generation IT Infrastructure), Grant-in-Aid
for Scientific Research (B), 23300009, 2011, and Grant-in-aid for
Young Scientists (B), 22700033, 2011 by the Ministry of
Education, Culture, Sports, Science and Technology, Japan.

6. REFERENCES

Developer
(2) Data Collector

(3) Estimator

(4) Formatter

referred html (bug A)

DB

bug A info.

Info. from
other system

s

Estimation
results

Formatted html

bug A Info.

(1) Access Detector

DSS （e.g. BTS）

[1] Ohira, M,. Yokomori R., Sakai M., Matsumoto K., Inoue K.,
and Torii K. 2004. Empirical Project Monitor: A Tool for
Mining Multiple Project Data. In Proceedings of
International Workshop on Mining Software Repositories
(MSR’04). pp.42-46.

[2] Johnson, P.M. 2007. Requirement and Design Trade-offs in
Hackystat: An In-Process Software Engineering
Measurement and Analysis System. In Proceedings of the
First International Symposium on Empirical Software
Engineering and Measurement (ESEM’07). pp.81-90.

[3] Bachmann, A., Bird, C., Rahman, F., Devanbu, P., and
Bernstein, A. 2010. The missing links: bugs and bug-fix
commits. In Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software
engineering (FSE’10). pp.97-106. Figure 2. System architecture.

34

