
Understanding OSS Openness through Relationship
between Patch Acceptance and Evolution Pattern

Passakorn Phannachitta† Pijak Jirapiwong‡ Akinori Ihara†

Masao Ohira† Ken-ichi Matsumoto†

†Nara Institute of Science and Technology ‡ Kasetsart University
8916-5, Takayama, Ikoma 50 Ngam Wong Wan Rd, Chatuchak

Nara, Japan Bangkok, Thailand
{phannachitta-p, akinori-i, masao, matumoto} b5005135@ku.ac.th

@is.naist.jp

ABSTRACT
Openness is referred how much does the OSS core com-

mitter team share and compile with their non-committers.
Because the openness can be varied from time to time, a
study for explaining the vary of openness would be a good
approach to support the OSS. It will not only encourage the
non-committers to exert more contribution when the open-
ness is high, but it will also make the them still have an
optimistic outlook on the project when the openness is low.
Unfortunately, there is only a few studies aiming to under-
stand this principle. This work, we seek out for the key
factors that identify the transitory changed of the openness.
Unlike most previous studies, we focus on the clear rele-
vant evidences that are more concrete. Our temporal-based
analysis on patch acceptance in two major OSS projects:
Apache HTTP Server and Eclipse Platform conclude that
special event occurrences have a decisive influence over the
openness either in transitory or lasting. Moreover, our inves-
tigation on the relationship between the temporal changes
of openness and a plausible OSS evolution pattern broadens
the mutual accord in both openness and the evolution of
OSS.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.9 [Software Engineering]: Management

General Terms
Management, Measurement, Experimentation

Keywords
Open Source Software, OSS Evolution Pattern, Temporal
Factor, Openness, Patch Submission, Patch Acceptance

1. INTRODUCTION
An active collaboration between every role in Open Source

Software (OSS) project is one of the most important key for
the sustainable development [6]. Many OSS supportive ac-
tivities will be ardently achieved whenever each role is well-
balanced in the number of participant and everyone exerts
the best effort. For an example on patch submitting activity,
which committers and non-committers are the two main dif-
ferent roles. Non-committers whose authority makes them
unable to apply patches for the project directly will be the

patch submitter, and the committers will be the judge who
accept the patch. An OSS project needs a high number
of active non-committers to increase and widen the perspec-
tive of requirements and patches the covers the larger area of
defects. The OSS committer team should also have enough
members that is capable for verifying all the incoming re-
quirements and patches thoroughly. Ideally the committer
should always be open and shared to the non-committer so
as to encourage them to increase their contribution.

Nowadays, a study that aims for comprehension between
committers and non-committers is quite overlooked. Most
studies give more attention to the individual supportive ei-
ther for committers or the non-committers. Studying the
OSS committer’s openness can be one that support both
committers and non-committers at the same time. Although
it has been concluded that temporal changes of the openness
are existence [14], more deepening study for the varieties of
the temporal factors is noteworthy. Analyzing without con-
cerning the temporal factors, the broader insightful study
of the OSS committer’s openness such as the open season
prediction or answering why the openness level is always
changed will be inconceivable.

This research aims to explain the transitory changed of
the committer’s openness. First, we have analyzed the patch
acceptance in temporal on the two well-known OSS projects,
Apache HTTP Server and Eclipse Platform. Temporal fac-
tor is important since it’s unfair to conclude how open of an
OSS committer team from the summarized statistic. From
our preliminary results, we have found that the special event
occurrences were the key factor influenced to the transitory
openness level. Further, we have noticed that there are some
remarkable treads exposed to the vary of the openness. Elu-
cidating those trends we have found the relationship between
the temporal changed of openness with a plausible OSS evo-
lution pattern proposed by Nakakoji et.al [7]. The relation-
ship we found is not only a sounded explanation for under-
standing the changes of the openness, but also a proof of the
validity of our chosen evolution pattern.

The remainder of the paper is organized as follows: Sec-
tion II explains the backgrounds and briefs the existing re-
lated works. Section III introduces our research questions.
Section IV explains our methodology. Section V describes
the case study setup and discusses on our finding. Section
VI contains an observation from the study. And finally, sec-
tion VII provides the conclusion and outlines some future
works.

37



2. BACKGROUND KNOWLEDGE
2.1 Related Works

To date, it has been quite lack of studies aimed to im-
prove the comprehension between committers and non-committer.
Most researches provide useful guidances for each individual
role. Bettenburg et al. suggested non-committers what will
make a good bug report [1]. Weißgerber et al. also suggested
them the proper size of the submitting patch [13]. On the
committer side, Wang et al. and Runeson et al. help the
committer ascertain if the reported bug is duplicated [9,12],
and Rigby et al analyze the personality of the top commit-
ter [8].

Nonetheless, a few studies proposed to make the com-
prehension between both roles, which will support both the
same time. Shibuya et al. have studied the process of par-
ticipating in OSS [10]. Their finding encourages the non-
committer to gain more reputations; however, their work is
still lacking in enthusiasm for making committer be more
open to the non-committer.

2.2 Patch Submission and Patch Acceptance
In OSS, patches contain different information between

two versions of the same file. Exchanging patches instead
is very convenience since the receiver can definitely know
the changed information without any further attempt. In
practical, when a non-committer needs some changes with a
target file (i.e. A file that locates in the project repository)
, that non-committer will check out the target file and edit
it. After that, the edited target file will be converted into a
patch and sent to the committers. Patches are usually sent
through a common channel provided by the OSS commu-
nity. The currently most popular channel is bug-tracking
system such as Bugzilla. Along the way to the committers,
the bug-tracking will let the submitted patch be discussed.
It helps the committer to evaluate how good and valuable of
the submitted patch. At last, if that patch reach a consensus
and the committers concur, the committers will apply the
submitted patch with the target file and commit it. Whether
the whole patch or just its portion is committed, it means
the committers accept the patch.

There is an interesting phenomenon that the commit-
ters can gradually accept a patch. Because a large patch
would contain more components which probably have high
dependencies. It seems impossible that all the components
would be accepted and committed at once. Unless we in-
clude the gradual patch-acceptance case, we will be unable
to report the reflected result from the patch acceptance anal-
ysis. Unfortunately, the recently existing researches ignored
this phenomenon [2, 13] that may lead the authors to an
inaccurate conclusion.

2.3 Openness and Open Season
Openness is a term referred how much do the commit-

ters share and comply with their non-committers. To date,
it is still inconclusive that a high openness committer is al-
ways a good committer [8]. However it’s a rational thought
that as long as the non-committers know the committers
are open, they will give their earnest effort to the project,
because the non-committers would feel they are important
know that they are not being isolated. Moreover, avoiding
the decreasing of openness will induce the committers to
give more attentions to the non-committers.

Openness can be analyzed in many aspects, such as count-
ing the committers’ reply messages or approximately accu-

mulating their spending time with the bug report. However,
an absolutely clear evidence such as the number of patch ac-
ceptance would rather conclude the openness. In this work
we can know the actual committed number of a patch (
from the partially committed case). We define an openness
in our works by counting the time that committer’s com-
mitted any part of patches in a defined period. It would
give us more accurate insight than counting the number of
accepted patches directly. There is an interesting question
about analyzing the openness about concerning the tempo-
ral factor Definitely, an OSS project has been continually
and unceasing developed. It’s hard to believe that the com-
mitters team is composed with the same people throughout
the time. The team can be reorganized so that the openness
is possible to be changed. Since the openness is changeable,
patches can also be more or less accepted in some periods.
We will denote a period contains a relative high number of
patch acceptance as in opening season.

2.4 Evolution Pattern of OSS
The temporal-based analysis of the OSS committers’ open-

ness will inherently reveal the characteristics of OSS project
distinctively between each development period. A further
analysis from these informative characteristic will broaden
the accord about an evolution of OSS. Currently, there are
several existing studies of OSS evolution patterns [3, 4, 11],
we selected one plausible pattern proposed by Nakakoji et
al [7]. They categorized OSS project into three types, and
also outline the characteristics of each type in many dimen-
sions Three types of OSS project are Exploration Oriented,
Utility Oriented, and Service oriented. We summarize the
dimensions related to our work in table 1.

2.4.1 Exploration Oriented
An OSS project usually becomes an Exploration Ori-

ented when the project itself has been received some new
ideas. Normally, new ideas are emerged by the senior de-
velopers or the project leader whom know the project very
well so that the new ideas are usually discussed among the
core members. Being an Exploration Oriented project, core
developers or committers seem to more closed comparing be-
tween other periods. It’s more likely to be happened when
the project was just founded or after it has been mature for
a while.

2.4.2 Utility Oriented
An OSS project usually becomes this type when a project

needs of some new features or enhancements. It’s differ-
ent from Exploration Oriented, because requiring for a new
feature or enhancement can be a requirement from anyone.
Reforming into a Utility Oriented is possible anytime, either
the project is under developing and has a plenty of bugs or
the project has been being mature for a long time. Being
a Utility Oriented project, core developers or committers
seem to be most opened among other periods, since they
need more suggestions to be discussed.

2.4.3 Service Oriented
An OSS project is usually reformed into Service Oriented

after a project released a stable version. The goal of a Ser-
vice Oriented project is to provide service as stable as pos-
sible. Being this type, core developers or committers are
slightly less open than a Utility Oriented project and the

38



Table 1: Three Types of OSS Project
Exploration-Oriented Utility-Oriented Service-Oriented

Objective Sharing Innovations and Knowledge Satisfying an individual need Providing stable service
Control style Cathedral-like central control Bazaar-like decentralized control Council-like central control

Community structure Project leader and core members Core members and many peripheral developers Core members and Many passive users
Major problems Finding a novel innovation Difficult to choose the right program Less innovation

openness is likely to be continually decreased, because the
project has been more stable that would normally have less
number of defects.

From the three classified types of the OSS project pro-
posed by Nakakoji et.al [7], they believed that the evolution
pattern of any OSS will be alternating from one type to oth-
ers as illustrated in figure 1. They also gave some examples
of an idea for the transition between each types (i.e. When a
Service-Oriented project has some new needs, it will reform
into a Utility-Oriented project.) However the conclusion to
support if the evolution pattern is respected to this pattern
as shown in the figure 1 are still waiting for a proof.

Figure 1: The Evolution Pattern of OSS Projects [7]

3. RESEARCH QUESTION
To develop an understanding of the transitory changed

of OSS committers’ openness through analyzing the patch
acceptance and OSS evolution pattern, we need to answer
two research questions.

3.1 What is the key factor that makes the OSS
committers changed their openness?

Tackling this question, we would understand clearer about
the patch acceptance. Achieving the key factor that in-
duce an open season will allow us to briefly foretell the non-
committers when should they exert more contribution. Fur-
thermore, if the open season characteristic is likely to be in
common, it could be a feature for predicting the open season,
which is more promising. On the other hand, we also need
a sound reason to explain why do the committers decrease
their openness in some periods. Without a sounded reason,
the non-committer may consider that the committer teams
are having some trouble that they are unable to thoroughly
verify the submitted requirements and patches.

3.2 How can an OSS evolution pattern explain
the trend of OSS committers’ openness?

Unlike the other routine works, the openness of the OSS
committers does not always stay at the same level [14]. At
least it still respected with some trends (i.e. keeps increasing
or decreasing for a period of time). OSS evolution pattern
may have an supportive explanation since it explains the
change of OSS projects. If it is existed, we would reach a
better insight of the OSS openness and the patch submission
activity.

4. METHODOLOGY
For the case study, we develop a method to gather the

patch acceptance traces divided into period of time. The
method has three phases that are Patch extraction, Diff file
creation, and Patch acceptance identification.

4.1 Patches extraction
We have two types of data source; Mailing list and Bugzilla.

Mailing list is where committer and non-committer discuss
about patch and bug, and Bugzilla is a well-known bug
tracking system. Their structures are totally different, so
we need two specific patch extraction methods.

For the mailing list, we choose to improvise and ex-
tend the Weißgerber et al.’s proposed [13]. It is the closest
method that fulfilled our requirement in patch extraction
from email. On the other hand, we have to develop a specific
web site crawler to extract patches from Bugzilla from the
scratch since such an explicated proposed method is nonex-
istent.

In both methods, we denote our patch format with a
tuple (Ip, Pp, tp, Lp, [cp]) where Ip is the patch’s index, Pp

is the patch’s absolute path that we can identify the corre-
sponded target file in the repository, tp is the patch’s sub-
mitting time, which we has already converted into a common
timezone (UTC) for avoiding an incorrect time-stamp iden-
tification. Lp is the total number of the changed lines of
code, and [cp] is a list contained all the individual changed
lines of code. Note that, we collapse all white spaces in
[cp], because in practical the committer may apply patches
manually. It then may produce some white spaces shifted
that would lead us to an inaccuracy analysis. After we has
extracted all the information in (Ip, Pp, tp, Lp, [cp]) from the
raw-patch data , we stored them in a database.

4.2 Diff files creation
We denote a Diff file as a file that contains the changes

information between each committed version at the reposi-
tory side. These changed information make us able to track
whether the submitted patch are accepted. We create diff
files between each adjoining revision of all the target files
in the repository in order to know when do the patches are
committed. Moreover, creating a diff file between each ad-
joining revision make us able to include the gradual patch
acceptance case into our study.

In this phase, we also have two types of repository data
source: CVS and SVN. For both types of repository, at first
we extract the revision number and the timestamp of each
target file. A pair of revision number and timestamp then

39



guide us to obtain all the change information of target files.
Next, we create diff files from each pairs of adjoining revi-
sion and then extract the required information similar to
the patch extraction. We also denote the diff files as a tuple
(Ir, Pr, tr, [cr]). Ir is committed source code’s index, Pr is
the its absolute path, tr is its timestamp. We also parse the
time zone into a common timezone as the patches. [cr] is
the list of changed line in a revision which white spaces are
also collapsed . At last, we compose (Ir, Pr, tr, [cr]) into
records and store them in a database same as the extracted
patches.

4.3 Partial Acceptance Identification and Com-
mitment Counting

Since our analysis includes the gradually accepted case,
we conclude a patchi as an accepted patch if there is an
existed line of the submitted code that has been committed
with the corresponded target file to the repository within a
time limit ∆t.

(Ip = Ir ∨ Pp ∼match Pr)
∧ tp +∆t ≤ tr
∧ (∃l |l ∈ [cp]) ⊆ [cr]

We count up the number of patch commitments of the
accepted patches to study the openness. The counter of
patch commitment increases each time either when a patch
is fully committed or partially committed.

5. CASE STUDIES
We study on two well-known OSS projects: Apache HTTP

Server and Eclipse Platform. Apache HTTP Server has been
introduced as a web server since 1996 and is still popular.
Eclipse Platform is a part of Eclipse project, which is a well-
known interface development environment (IDE) project.
We analyze the patch submission and acceptance on Apache
HTTP Server between its mailing list system and its SVN
repository. For another Eclipse platform project, we ana-
lyze between its bug-tracking system named Bugzilla and
its CVS repository. Table 2 shows the quantitative informa-
tion on both case-study data sources.

Table 2: The characteristic of the case-study
datasets

(a) Repositories

Apache HTTP Server Eclipse Platform
Repository SVN CVS

Observing period 1998/06 - 2003/06 2002/06 - 2008/06
#File 6283 46,004

#Changed line 1,994,030 9,532,211

(b) Patches Data Source

Apache HTTP Server Eclipse Platform
BTS Mailing list Bugzilla

Observing period 1998/06 - 2002/06 2002/06 - 2007/06
#Patch 5,212 75,808

#Target file 1,926 71,153
#Changed line 140,391 9,919,338

We assign the time scope ∆t as 365 days on both data
sets because we concern the gradual patch accepted case.
Larger patches are normally composed with more compo-
nents so that they will probably take longer time to be fully

accepted. Note that the Patches Data Sources contain one
year less data than the repositories to make the experimen-
tal results reflected with our max ∆t as 365 days. Figure 2
is illustrated our experimental results performed on both
datasets. In both graphs the y axis denotes the total number
of patch commitment, and the x axis denotes the timeline in
month interval. We will explain about the label above the
graph later during the subsidiary of research questions.

5.1 What is the key factor that makes the OSS
committers changed their openness?

Observing through the both timelines 2(a) and 2(b), we
are massively captivated by the frequent occurrences of pulses.
It’s rather unusual that needs a satisfactory explanation.
There are several good metrics analogous to the temporal
factors [5]. Special event occurrence and trend are very in-
teresting factors. However, the pulses’ appearance seems to
have high impact and be in transitory that make us prefers
a hypothesis about the occurrence of special events over the
trend.

We have noticed two different characteristics of the pulses
in both figures 2(a) and 2(b). First is the number of com-
mitment has continually increased or decreased after a pulse
is occurred. Another one is a pulse is surrounded by lower
number of commitment that are approximate equivalence.
Therefore, there should be more than one type of event oc-
curred.

5.1.1 The number of patch commitment has contin-
ually increased or decreased after a pulse is
occurred

We start a deduction from the most ordinary case. We
thought the decreasing (i.e. 2003/02 in Apache HTTP Server
and 2006/02 in Eclipse platform) is tend to more unusual
than the increasing. Because the increasing number of patch
acceptance may as usual as the project growth. One plau-
sible explanation is during a decreasing patch commitment
period, the project was stable enough and had the less num-
ber of severe bugs.

We investigated the released dates of the project in prior
versions, and the released dates we have found are likely
matched with the pulses related to this case. We label the
corresponded released version over the graph in figure 2.
It supports our hypothesis about the stable released ver-
sions. Moreover, it also tells us about the increasing period
of patch commitment after a pulse is occurred (i.e. 2000/03
in Apache HTTP Server and 2005/02 in Eclipse platform).
The pulses belonged to this case are matched with the re-
lease of some minor versions (i.e. alpha and beta version).
Because the release of minor version still probably has many
topics needed to be discussed. Note that, here the released of
minor versions may not produce a pulse, but the number of
patch commitment is always increased for a short period af-
ter that. (i.e. 2002/02 in Apache HTTP Server and 2002/11
in Eclipse platform)

5.1.2 A pulse is surrounded by a lower commitment
periods that are approximate equivalent level

We have outlines a hypothesis about the events support-
ing this case. The supportive event for this type of pulse
should be held in a short period and probably has a transi-
tory effect, since it does not induce any change of the patch

40



(a) Analyzing Patch Acceptance from Apache HTTP Server project between June 1998 and June 2003

(b) Analyzing Patch Acceptance from Eclipse Platform project between June 2002 and June 2007

Figure 2: The Patch Acceptance Analysis Results from Apache HTTP Server and Eclipse Platform

acceptance.
We start our investigation on the first significant pulse of

Apache HTTP Server in August 1999. Focusing on that time
point, we turn up to a record of the first O’Reilly Apache
Conference held in that month. It is perfectly matched with
our hypothesis that caused by the OSS community must
have placed some advertisements for the forthcoming con-
ference. (i.e. calling for paper) It then captivated more
developer to participate with the OSS community. We also
track for more corresponding conference shown on the fig-
ure 2. Eclipse platform is more explicit to conclude this
hypothesis with the conference occurrence.

5.2 How can an OSS evolution pattern explain
the trend of OSS committers’ openness?

Focus on the control style column of each type of OSS
project in table 1, the three different styles tell us obviously
that we can distinguish each type of the OSS projects by
the amount of openness. Since patch acceptance is directly
related with the openness, a relationship between OSS evo-
lution pattern and the patch acceptance would exactly be
existed. In figure 2, if we omit the special-event pulses,
there will be only the trends of the patch acceptance left:
increasing, decreasing, and stay-the-same.

The most simple case is the increase of patch acceptance.
Since the Bazaar-like decentralized control [6] is the only
one type of OSS project that could generate it, we could

assume the project must have been a Utility-Oriented dur-
ing the increasing of patch acceptance. We then also be-
lieve that the project was transiently Utility-Oriented during
a special event pulse, because of the drastically increment
of the accepted patch. Next, the decreasing trend of the
patch commitment is usually happened after a major re-
leased. It is caused by the project is more stable, then fewer
defects needed to be fixed. Consequently, the objective of
the Service-Oriented as shown in table 1 makes it perfectly
matched with this case.

However, the stay-the-same case is quite complicated.
It can be occurred in several situations. The most simple
case for the stay-the-same is when the project has just been
founded or been well-known. This case is simply concluded
as an Exploration-Oriented type. Then, what would be hap-
pened if the stay-the-same is occurred after the increasing
(Utility-Oriented) period? After many needs and require-
ments were satisfied and many features also have been ap-
pended; the project should be more mature. We will con-
clude the stay-the-same after an increasing of patch accep-
tance period as a transition period between Utility-Oriented
and Service-Oriented. At last, what if the stay-the-same was
occurred after the decreasing (Service-Oriented) period. Af-
ter a project has been mature for while, the need of ex-
pansion should become an issue. It may be a transition to
become an Exploration-Oriented or a Utility-Oriented. If
new ideas and innovations are more important, it will be
a transition to be an Exploration-Oriented. On the other

41



hand, if the expansion is inspired by new requirement, it
will probably be a transition to be a Utility-Oriented.

6. OBSERVATION
Comparing between two projects, Eclipse Platform are

more predictable. Figure 2(b) shows that Eclipse platform
has been continual growing respected to the almost same
pattern from year to year (start in March). Most of the local
relative peaks are always in the month that held a confer-
ence, and the number of patch acceptance always decreases
after a major release. We believed it is caused by Eclipse
Platform has a clear routine on its conference (around March)
and the released date of major version (around June). Since
the target checkpoint is clearly defined, all the participant
will know how much should they exert their effort averse to
the time to make the project reached the goal. Moreover,
the clearly defined checkpoint would make the project self-
comparable and let the participants know how much does
the project develop from year to year. It is very interest-
ing that when Eclipse platform has introduced a conference
(Eclipse Summit) in 2006, the growing pattern is still the
same but has been shorten (From March to October and
October to March). This is a good proof of our caprice
that the occurrence of conference has an influence to the
openness, especially in a project that defines the important
events very well such as Eclipse platform.

7. CONCLUSION AND FUTURE WORK
In this research, we found out what makes the OSS com-

mitters changed their openness and how could an OSS evo-
lution pattern explain it. We analyzed two well-known OSS
projects: Apache HTTP Server and Eclipse Platform. The
results revealed two interesting identities of the OSS com-
mitters’ openness. First, we found that at least two types of
special event occurrences would affect the openness. When
an official conference or workshop are forthcoming, the open-
ness will remarkably increase. The conference’s announce-
ment and advertisement would arouse the newcomers as well
as the currently inactive developers and users. The project
then become more active so that wider varieties of patches
were produced and submitted. The second type of special
event is the released versions.After a minor version was re-
leased, there usually still has some open issues waiting to
be resolved so that the committers would be still or opened.
Alternately, a major version should be released after most of
opening issues has already been resolved; hence, the number
of patch acceptance would typically be decreased.

Our second finding is the relationship between the tran-
sitory changed level of openness and the OSS evolution pat-
tern proposed by Nakakoji et.al [7]. The relationship we
found can elucidate that the alternation of committer’s open-
ness level is an effect of the OSS project’s evolution. More-
over, the result from our in temporal-base patch acceptance
analysis can be a proof for the inconclusive hypothesis the
evolution pattern, which they believed an OSS project would
be evolved alternately from a type to others continually.

Beyond this research, we will explore more aspect and
study more features to develop a knowledge of OSS com-
mitters’ openness. We are ardently believed that openness
and open season are entirely predictable.

Acknowledgment
The first and second authors are grateful to the intern-

ship program cooperated and supported between Kasetsart

University, Thailand, and Nara Institute of Science and Tech-
nology, Japan. It bestows a grant as well as an opportunity
for undergraduate student to achieve a wealth experience in
abroad graduated school research.

This research is being conducted as a part of the Next
Generation IT Program and Grant-in-aid for Young Scien-
tists (B), 22700033, 2010 by the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan.

8. REFERENCES
[1] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,

and T. Zimmermann, “What makes a good bug report?” in
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering
(SIGSOFT ’08), 2008.

[2] C. Bird, A. Gourley, and P. Devanbu, “Detecting patch
submission and acceptance in oss projects,” in Proceedings
of the Fourth International Workshop on Mining Software
Repositories (MSR ’07), May 2007.

[3] A. Capiluppi, J. M. González-Barahona, I. Herraiz, and
G. Robles, “Adapting the ”staged model for software
evolution” to free/libre/open source software,” in Ninth
international workshop on Principles of software evolution:
in conjunction with the 6th ESEC/FSE joint meeting
(IWPSE ’07), 2007.

[4] M. W. Godfrey and Q. Tu, “Evolution in open source
software: A case study,” in Proceedings of the International
Conference on Software Maintenance (ICSM’00), 2000.

[5] B. Manaskasemsak, A. Rungsawang, and H. Yamana,
“Time-weighted web authoritative ranking,” Inf. Retr.,
vol. 14, April 2011.

[6] K. Nakakoji, K. Yamada, and E. Giaccardi, “Understanding
the nature of collaboration in open-source software
development,” in Proceedings of the 12th Asia-Pacific
Software Engineering Conference, 2005.

[7] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and
Y. Ye, “Evolution patterns of open-source software systems
and communities,” in Proceedings of the International
Workshop on Principles of Software Evolution (IWPSE
’02), 2002.

[8] P. C. Rigby and A. E. Hassan, “What can oss mailing lists
tell us? a preliminary psychometric text analysis of the
apache developer mailing list,” in Proceedings of the Fourth
International Workshop on Mining Software Repositories
(MSR ’07), 2007.

[9] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection
of duplicate defect reports using natural language
processing,” in Proceedings of the 29th international
conference on Software Engineering (ICSE ’07), 2007.

[10] B. Shibuya and T. Tamai, “Understanding the process of
participating in open source communities,” in Proceedings
of the 2009 ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and
Development (FLOSS ’09), 2009.

[11] N. Smith and J. F. Ramil, “Agent-based simulation of open
source evolution,” in Software Process Improvement and
Practice, 2006.

[12] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An
approach to detecting duplicate bug reports using natural
language and execution information,” in Proceedings of the
30th international conference on Software engineering
(ICSE ’08), 2008.

[13] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!”
in Proceedings of the 2008 international working conference
on Mining software repositories (MSR ’08), 2008.

[14] M. Yamamoto, M. Ohira, Y. Kamei, S. Matsumoto, and
K. Matsumoto, “Temporal changes of the openness of an
oss community: A case study of the apache http server
community,” in Proceedings of The Fifth International
Conference on Collaboration Technologies (CollabTech
’09), 2009.

42




