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ABSTRACT

There are many roles to play in the bug fixing process in
an open source software development. A developer called
“Committer” who has permission to submit the patch into
the software repository plays a major role in this process
and holds a key to the success of the project. In this work,
we have observed committers’ activities from the Eclipse-
Platform bug tracking system and version archives. Despite
the importance of committer’s activities, we suspected that
sometimes committers can make mistake, which have a neg-
ative consequence to the bug fixing process. Therefore, our
research focused on studying the consequences of commit-
ters’ activities to this process. We collected committers’
history data and evaluated each of them by comparing the
more cautious to less cautious committers. From our results,
we would like to create a clear understanding on committers’
activities and their consequences on the bug fixing process in
order to find a better way to improve the bug fixing process
in OSS projects.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Complexity mea-
sures, Performance measures; D.2.9 [Software Engineer-
ing]: Management — Productivity, Programming teams, Soft-
ware quality assurance (SQA)

General Terms

Human Factors

Keywords

open source software (OSS), committer, bug fixing process

1. INTRODUCTION

Open Source Software (OSS) has been attracting a great
deal of attention from a variety of areas as an alternative
way to use and develop software. Currently, OSS products
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has a large impact on not only the end-users, but the manu-
facturers of mobile devices as well, since they need to exploit
OSS to produce their end products. For instance, Linux, the
OSS that sets the strong roots for other operating systems,
and Google’s Android’s operating system that, based on this
OSS, has become the best-selling smart phone platform. As
OSS become more common and popular among us, however,
its projects are faced with a big challenge to their quality as-
surance activities. Due to their growing user base, especially
large OSS projects such as the Mozilla and Eclipse projects
receive considerable amount of bug reports from the users
on a daily basis [13] (e.g., several hundred bug reports are
posted to the Bugzilla database of the Mozilla project every
day). Therefore, OSS projects require an effective way of
dealing with the large number of bug reports.

In an OSS project, a bug is fixed through the bug fixing
process [19] which is a process of fixing the bug from the
time a bug was reported in the project until the patches for
fixing the bug have been submitted into a software repos-
itory such as Bugzilla. Each bug report in this process is
passed through one or more developers who play different
roles before the process is closed.

In this study, we focused on developers who have the priv-
ilege to submit patches into the software repository, called
Committers. This group of developers play major roles in
the bug fixing process [7]. Their main task is to review (and
sometimes edit) patches posted by other developers and sub-
mit them into the software repository. Some of them also
perform other tasks including bug resolution and bug reports
management. Using Concurrent Versions System (CVS) and
Bug Tracking System (BTS), they resolve bugs, join discus-
sions about bugs, verify fixed bugs by developers, close bug
reports, and so forth. As just described, committers’ activ-
ities are vital for sustaining and improving the quality of
OSS products.

However, committers are not always perfect. They some-
times make mistakes. For instance, they can uncautiously
verify a bug report already resolved by a developer and close
the bug report, creating another bug report for the same
bug again (i.e., reopen bug). In this paper we are interested
in creating a better understanding of committers’ activities
and their consequences on the bug fixing process in order to
find a better way to improve the bug fixing process in OSS
projects.

Selecting the Eclipse-Platform’s Version archives (CVS)
and Bug Tracking System (BTS) as the information source
of our case study, we ask the following research question.



RQ: What are the consequences of the committer’s
activities to the bug fixing process? In this question,
we studied the committer’s activities and their effects to the
bug fixing process. Then we compared the consequence of
more cautious committer’s activities to the lesser one.
Through answering the research question, we provide con-
tributions in this paper as follows.

e To create a better understanding on a committersO
activities and their consequences on the bug fixing pro-
cess in order to find a better way to improve the bug
fixing process in OSS projects.

In what follows, we introduce our related works in Sec-
tion 2 and extraction method in Section 3. Section 4 shows
the results and process on how we answered our research
question. Additional interesting results that we are able to
identify during this work are discussed further in Section 5.
Section 6 describes our limitations and future work, and we
summarize our study in Section 7.

2. RELATED WORK AND MOTIVATION

Most existing studies are focused on how to reduce the
time to fix bugs since it has been gradually increasing, es-
pecially in large OSS projects. There are currently three
promising approaches to improving the bug fixing process.
In what follows, we describe the existing approaches and our
motivation of this study.

2.1 How to make a good bug report?

A good bug report contributes by reducing the time to fix
bugs because it can help developers to quickly find, replicate,
understand the bugs at hand. However, developers’ infor-
mation needs in the bug reports are often unsatisfied, since
users do not know what type of information are required to
fix a problem and so rarely articulate the problem on the
software use as developers can fix it. For instance, users do
not correctly report procedures to reproduce an error (e.g.,
sometimes they just say “This option does not work in my
computer!”). Therefore, developers have to ask users to give
more information again and again to identify and fix the er-
ror. If things go wrong, developers cannot confirm the error
and then leave it unresolved reluctantly.

In order to improve cooperation on a bug report between
developers and users, many studies [3, 4, 6, 10] have inter-
viewed OSS developers and users to understand the informa-
tion needed to fix the bug. For example, through interviews
with over 150 developers and 300 reporters of the Apache,
Eclipse and Mozilla projects, Bettenburg et al. [Betten-
burgFSE2008] have found that steps to reproduce and stack
traces are most useful in bug reports.

2.2 Duplicate bug detection

Users often report the same problem that was reported
by another user in the past or that has already been fixed
by developers. Developers also sometimes try to resolve the
same problem which had been resolved in other times. This
can happen because there are a large number of bug reports
in the bug tracking system. Both the users and developers
cannot be aware of all the reported bugs though the search-
ing function that was provided to find bugs reported in the
past. In this manner, the same bugs are duplicated in BTS
which result in wasting developers’ time and efforts.
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To avoid duplicate bugs in BTS, several studies [18, 15,
20] have tried to detect duplicate bug reports automatically.
For example, Wang et al. [20] present an approach to de-
tect duplicate bugs based on a natural language processing
techniques.

2.3 Re-opening and reassigned bugs

Even if a bug fixing task is assigned to a developer, it may
not be completed by the developer which is then reassigned
(tossed [13]) to other developers. This often happens be-
cause a trigger assigned a bug fixing task to an inappropriate
developer who does not have sufficient knowledge and skill
to complete the task. In the Eclipse and Mozilla projects,
37% to 44% of bugs are reassigned to another developer [13].
Preventing the bug tossing (assigning a bug fixing task to
appropriate developers) is very effective in reducing the time
to fix bugs.

Several approaches [1, 14, 13, 9, 8] exist in this topic. For
instance, Anvik et al. [1] proposed an approach to assign a
bug to an appropriate developer based on past bug reports
with natural language processing. Jeong et al. [13] also tried
to establish a method for the bug assignment based on a so-
cial graph which reflects on social relationships among devel-
opers in the bug assignment. Other approaches involved in
achieving better understanding on why reassignment occurs
many times [9] and in creating a method to predict which
bugs will be reopened or get fixed without being reopened
[8].

2.4 Cautious and uncautious committers

In general, a dedicated developer is nominated or elected
to become a committer in an OSS project [12]. The OSS
project carefully selects a developer as a committer candi-
date since committers play the important roles as described
earlier. It takes one or two years to be a committer. A
developer who wish to be a committer has to keep showing
devoted activities to the project for a considerable period
of time. Due to this promotion process, many of developers
leave the project within a year and the OSS projects are
always faced with the difficulty in having to find more com-
mitters who can greatly contribute to the bug fixing process.

In order to find a way to increase committers in OSS
projects, Fujita et al. [7] have examined activities of devel-
opers and committers in the PostgreSQL project and tried
to identify promising developers who were making a signif-
icant contribution equivalent to committers and potentially
should be nominated to be committers in the future. Al-
though the study found interesting aspects of committer
candidates, it still adhered the current practice of existing
committers and their promotion process in OSS project. In
fact, one of their conclusions was that long-term participa-
tion in a project was the most important aspect to become
a committer.

Different from [7], in this paper we have studied the com-
mitters’ activities and their consequences. Our basic as-
sumption on committers is that committers are not always
perfect and sometimes make mistakes because they are also
human-beings. Some of them might uncautiously verified a
fixed bug by developers, creating reopened bug reports in
the future. They also might uncautiously reviewed and ac-
cepted a patch posted by developers to fix a bug and then
committed it into the repository such as CVS that would
bring reopen and another bug reports. In this study we are



interested in having a clear understanding of committers’
activities and the consequence to the bug fixing process.

3. EXTRACTION METHOD

In this section, we describe how we extracted information
of committers’ activities from the Eclipse-Platform project
for our case study. Firstly, we describe how records of com-
mitter’s activities are preserved in OSS the development.
Then we introduce our method of extracting the information
to observe committer’s support activities and main activities
respectively.

3.1 Committers’ Activities

When developers are involved in the bug fixing process,
their action are recorded in many formats. In common
with many other OSS projects, Eclipse-Platform had cho-
sen Bugrzilla as their BTS where records each committer’s
support activities such as patch reviews and status changes
(e.g., sometimes developers check the resolution of a bug and
mark the bug’s status to “VERIFIED” or “CLOSED”[19])
are stored. Developers in the project can see the information
of the database in the HTML form through a web browser.

The project also used CVS to keep track of their com-
mit history which is recorded in the plain text format called
“commit log”. By combining the information from both CVS
and BTS, we are able to observe when/why/how each de-
veloper had contributed in the bug fixing process.

Using both the commit log and the Bugzilla database as
our data sets, we collected 85,387 bug report data on BTS
and over 30,833 commit log data on CVS. As a result, we
were able to captur activities of 2,584 different developers
from October 2001 until January 2010.

In order to archive our results, first, we need to identify
who the committers are, excluding them from thousand of
regular developers in the projects. To our knowledge, there
is no specific activity that can decide whether one developer
is a committer or not. [7] suggests only a rough description
of how they extract their committer list. Based from their
work, they had defined a developer as a committer, who
has a privilege to submit a patch to the software repository.
By using this definition, we managed to extract our list of
committer’s names. When a committer makes a patch com-
mitment, their action is captured and their name is recorded
in commit log’s author field. By using regular expressions
to scan every CVS line, we are able to identified 74 privilege
developer names to create our list of committers’ names.

From the committer list, we need to collect each com-
mitter’s behavior data. We describe the procedures in the
following separate subsections. In the first subsection we
described how we collect each committer’s support jobs in
BTS, that is, how we studied the footprint of their support
activities left on Bugrzilla'. The second section describes
how we observe committer’s main jobs in CVS, that is, how
we collects their patch commitment footprint left on CVS
data.

3.2 Observing Support Activities From BTS

!Only some committers use the same account name in CVS
and BTS. In order to map between their two accounts, we
used automated method to find an exact-name-match for
the committer who use same account name in both records.
For those who did not, we have no choice but to map each
committer’s name manually.
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In the bug tracking system, each reported bug is identified
by a number called bug-id, attached with other data such as
bug priority, bug status history, developer’s comment, and so
on. Each bug has its own current status varying from NEW,
ASSIGNED, VERIFIED or CLOSED. Some bug status have
its own resolution to indicate what happened to the bug such
as FIXED, INVALID, and DUPLICATED(19].

Bug status history are used in many researches as a very
useful source of information. Researchers can test a hypoth-
esis[7], create prediction models[16], or performs statistical
analysis[11]. In this paper, when we describe the bug sta-
tus that have changed from one to the others in the bug
history, for better clarifications, we present the bug’s his-
tory in the form of bug status patterns. We use “=" for
separation between bug status. Time dimension flow from
left to right of the patterns. “...” Symbols represent any
or many bug status changed and we use “()” to show the
resolution of the bug status if it is exist. These bug status
pattern can start from as simple as OPENED = NEW =-
ASSIGNED = RESOLVED (FIXED) to the more complex
pattern such as OPENED = NEW = ASSIGNED=- RE-
SOLVED (INVALID) = REOPENED = ASSIGNED =
RESOLVED (WORKSFORME). For the first pattern, we
can observe that the bug has been assigned only once before
its resolved. This type of the pattern usually leads to short
or normal bug life cycle while the more complex one often
leads to longer bug life cycle.

We are able to observe and collect each committer’s sup-
port activities based on this bug status patterns. We could
identified 52,013 of 85,387 bug reports that were involved
by our committers with 4,941 of 30,833 difference bug sta-
tus patterns.

3.3 Observing Main Activities From CVS

For the Eclipse-Platform’s commit log (from CVS), we
wish we could have observed the committer’s main behav-
iors solely from the commit log as we did in the Bugzilla bug
history. Unfortunately, from this commit log we can only
have a narrow vision of committer’s activities; It captures
only revision numbers, date of commit and some informa-
tion about source code changes. The description about each
change is solely depend on committer’s opinion. This de-
scription field has no centralized format and often recorded
in an ill-organized pattern (some of them are empty some-
times).

Due to these inconsistencies, the CVS description is not
adequate to judge each committer’s behavior. In order to
overcome this problem, we decided to adapt T. Zimmer-
man’s[17] approach to our study. Their approach has sug-
gested that, despite its inconsistencies, sometimes commit-
ter has mentioned bug-id in the CVS description. By using
bug-id as a trails, we identified it as a links from the CVS
repository to the bug database. From these links we can
look further into the BTS database where we have wider be-
havior information to study. The technique on finding these
links has been used in many works in this field (e.g., [2],[17]
and [5] has described these links and illustrated it clearly.).
By adapting the Zimmerman’s approach to our study, we
managed to identify 1,193 links from our commit log. Thus,
we could collect each committer’s main activities.
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Figure 1: Box plot comparing the life cycle of

Reopen-after-committed bug and normal bug

4. RESULTS

RQ: What are the consequences of the committer’s
activities to the bug fixing process?

By focusing on the consequences of committer’s activities,
we separated the results for this question into two parts:
the consequences of a committer’s main activities and the
consequences of a committer’s support activities.

4.1 Consequences of Main Activities

APPROACH.

As mentioned above, we suspect that when a committer
un-cautiously committed the patch that fixed the bug, this
bug might be reopened later to be resolved again. After
compare the bug life cycle of these Reopen-after-committed
bugs with the other bugs that did not reopened from 1,193
links found from CVS and BTS, we identified 140 bugs that
had been reopened after committers committed the patches.

FINDING.

The result are shown in Fig 1, we can see that when a bug
is reopened after patches were committed, the bug tends to
have longer life cycles.

4.2 Consequences of Support Activities

APPROACH.

As explained earlier, we collected committer’s support ac-
tivities by observing the bug status history and rewrote these
status history in the form of patterns. In order to study the
consequence of these patterns to the bug fixing process, we
had randomly chosen these patterns to inspect manually. By
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This resolution | can reproduce
seems to work the problems

—— | ' |

VERIFIED

(a) Reopen-after-verified/closed pattern

—>> Bug status history

REOPENED

RESOLVED
FIXED

| cannot find This bug is
existing bug, DUPLICATED to
NEW bug-id 12345

—— | |

OPEN

j’> Bug status history

DUPLICATED

(b) Duplicate-after-new pattern

NEW

Figure 2: Bad-status-patterns observed in our study

focusing only on patterns related to committer’s jobs, we can
identify two status patterns that potentially have negative
effects on the bug fixing process.

The first pattern shown in Fig 2 (a) we call Reopen-after-
verified/closed pattern represents that bugs have been RE-
OPENED after they had been marked as VERIFIED or
CLOSED (e.g., ... = VERIFIED (FIXED) = REOPENED
or ... = CLOSED (FIXED) = REOPENED). We suspect
that this pattern occurs when committers do not cautiously
check a patch before they changed status to VERIFIED. So
this bug has to be reopened later (in worse case, the bug has
been left over and no one reopen it).

The second pattern shown in Fig 2 (b) called Invalid/Duplicated-

after-new indicates that bugs have been detected as IN-
VALID or DUPLICATE after they had been marked as
NEW (e.g., NEW = ASSIGNED = RESOLVED (INVALID)
or DUPLICATE). In this case, we suspects that a developer
who marked NEW made a mistake. This bug is not new
but was actually duplicated or was invalid (sometimes in-
valid mean it is not even a bug.). In this paper, we will
use Bad-status-pattern to represent the two bug status pat-
terns above. We suspect that the bug life cycle followed
Bad-status-pattern might be longer compared to the bugs
without such the bad pattern. Thus, these bugs waste more
developers’ time and efforts.

FINDING.

After extracting above patterns from every bugs in Bugzilla,
we were able to identify 405 bugs that followed Reopen-after-
verified/closed patterns with 289 bugs that has been marked
as VERIFIED by committers. The other bugs were verified
or closed by other developers that had verified permission
but does not have commit permission. Thus, they are not
committers. And for 696 bugs that followed Duplicate/Invalid-
after-new patterns, there were 470 patterns that had been
marked as new by our committers.

By using only bug reports that were involved with the
committers (total of 52,013 bug reports), we used a box plot
to compare the bug life cycle between the bugs that followed
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mal bugs

Reopen-after-verified/closed patterns, Invalid/Duplicated-after-

new patterns , to other bugs that our committer has been
involved. There were 51,254 bug reports that did not follow
Bad-status-pattern. The results showed significant different
number of days between these bugs. Unsurprisingly, the
bugs where a committer made a mistake has longer bug life
cycle.

5. DISCUSSION

In this section, we discuss the results from our research
question and additional results we can find during our re-
search.

5.1 Committer’s Uncautious Activities: Neg-
ative Effects On The Bug Fixing Process

From our research question’s results, we suspect some
activities that potentially has a negative consequence and
we compared it with normal activities. We can identify
that the patch that has been Reopen-after-committed or the
bugs that followed Bad-status-patterns have longer life cy-
cles compare to the other bugs. From this result, we wish
to make a humbly suggestion to an OSS’s committer to be
aware of their importance to the bug fixing process. When
they are not cautiously doing their jobs, they might extend
the bug life cycles.

5.2 Additional Results: Not all Reopend Bug
Are Bad

When we observed the bug status patterns in BTS, against
popular beliefs, we have found that not all reopens have
negative effects to the project. In the Eclipse-Platform, we
can identified that there are 6 types of reopens. Each type
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has different impact to the bug life cycle. Some patterns
showed that reopens can have positive effect such as ... =
RESOLVED(WONTFIX) = REOPENED = ASSIGNED
= RESOLVED(FIXED). We manually observed this pat-
terns, found that some developers simply change the bug
resolution to WONTFIX because they did not have enough
knowledge to fix it, which later has been REOPENED and
fixed by other developer. Another example is the reopened-
after-later pattern ( ... = RESOLVED(LATER) = RE-
OPENED ), this reopen is actually intended, LATER reso-
lutions usually mean ”this bug must wait for the new patch
to be fixed”, "this is not the target milestones”, or "need some
minor tweaks later”. We want to make suggestion to other
researchers who use bug status pattern in their work to be
aware of these types of reopen and their different impacts.

6. LIMITATION AND FUTURE WORK

In our extraction process, we have collected each com-
mitter’s patch commitment activities by the observed CVS
description that had a link to the bug database. Unfortu-
nately, this collected links number are considered to be small
in portions compared to all of the activities in the CVS. From
30,833 commits in the commit log, we can identify only 1,193
links with a unique bug-id. To reduce the bias resulted from
a sample size, our goal was to capture the largest represen-
tation of population as we can. As we explained earlier, we
(hopefully) archived this goal by adapting [17] approach in
order to overcome this limitations.

Please be noted that the results from this research is
focus only on the Eclipse-Platform’s development commu-
nity. This community structure are well-organized and have
full-time workers (like commercial development community).
Different OSS communities can have different structure which
will reflects in different results from the same approach.

In order to observe variation of the results reflected from
the different communities, our future works will apply the
approaches used in this research to another OSS projects
and we would like to look deeper into existing committers
themselves to find the committer candidates who will be-
come “good” committers. We also would like to observe an-
other developer’s role in the OSS’s bug fixing process, and
hopefully received a useful results that can benefit all OSS
communities.

7. CONCLUSION

In this paper, we have focused on developers who played
a major role in bug fixing process called Committers. We
suspected that, when the bugs are taken care by more cau-
tious developers (and verified by cautious committer), their
life cycles might be shorter. We identified committer’s ac-
tivities that have different consequences to the bug fixing
process. Our findings can be summarized as follows:

e We ware able to determined the patches that have
been reopened after it was committed and showed that,
when the committer committed the patch and that
patch had to be reopened later, it tends to have longer
life cycle.

e We categorized severals bug status patterns, showed
that when the bugs have its status followed Bad-status-
pattern, they have longer bug life cycle than the bugs
with other patterns.
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