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Abstract—There are many roles to play in the bug fixing
process in open source software development. A developer
called “Committer” who has a permission to submit a patch
into software repository play a major role in this process and
hold a key to the successfulness of the project. In this work,
we have observed each committer activities from the Eclipse-
Platform bug tracking system and version archives. Despitethe
importance of committer’s activities, we suspect that sometimes
committers can make some mistakes, which have a negative
consequence to the bug fixing process. Our research focus on
studying the consequences of each committer’s activities to
this process. We collected each committer’s history data and
evaluated each of them by comparing the more cautiousness
to less cautiousness committers. Then we looked deeper into
each committer’s characteristics to see the reasons why some
committers tend to make a mistake more than the others. From
our results, we would like to make a humbly suggestion to
the OSS’s committers to be aware of their importance to the
projects and be cautious before doing their jobs.

Keywords-open source software (OSS); committer; bug fixing
process

I. I NTRODUCTION

These days Open Source Software (OSS) has been at-
tracting a great deal of attention from a variety of areas
as an alternative way of software use and development.
For instance, the Google’s Android operating system has
become the best-selling smart phone platform. Currently
OSS products has a large impact on not only end-users but
also company users such as manufacturers of mobile devices,
since they need to exploit OSS to produce their end products.

As OSS has become more common and popular among
us, however, OSS projects are facing with a big challenge
to their quality assurance activities. Due to the growing user
base, especially large OSS projects such as the Mozilla and
Eclipse projects receive a considerable amount of bug reports
from the users on a daily basis [1] (e.g., several hundred bug
reports are posted to the Bugzilla [2] database of the Mozilla
project every day). OSS projects require finding an effective
way of dealing with a large number of bug reports.

In an OSS project, a bug is fixed through the bug fixing
process [3] which is a process of fixing the bug from the
bug was reported in the project until patches for fixing the
bug has been submitted into a software repository such as

Bugzilla. Each bug report in this process is passed through
one or more developers who play different roles before it is
closed.

In this study, we focus on a developer who has a priv-
ilege to submit patches into the software repository, called
Committer. This group of developers play major roles in
the bug fixing process [4]. Their main task is to review
(sometimes edit) patches posted from other developers and
then submit them into the software repository. Some of them
also perform other tasks including bug resolution and bug
reports management. Using a concurrent versions system
(CVS) and bug tracking system (BTS), they resolve bugs by
themselves, join discussions about bugs, verify fixed bugs by
developers, close bug reports, and so forth. As just described,
committers’ activities are vital for sustaining and improving
the quality of OSS products.

However, committers are not always perfect. They some-
time make a mistake. For instance, they uncautiously verifya
bug report resolved by a developer and close the bug report,
but this uncoutious act can result in creating another bug
report for the same bug again (i.e., reopen bug). In this
paper we are interested in creating a clear understanding
on committers’ cautiousness and their consequences on the
bug fixing process, in order to find a better way to improve
the bug fixing process in OSS projects.

A. Research questions

Selecting Eclipse-Platform’s version archives (CVS) and
bug tracking database (BTS) as the information source of
our case study, in this paper we ask the following research
questions.

RQ1: What are the consequences of committer’s
cautiousness to the bug fixing process?In this question,
we study the committer’s cautiousness and its effects to the
bug fixing process. Then we compared the consequence of
more cautious activities to the lesser one.

RQ2: What characteristics are related to more cau-
tious committers? and how about the lesser one?With
this question, we suspects that committer who are more
cautious should have some characteristics different from
the less-cautious one. We classify, evaluate and compare



each committer, attempts to find characteristics that separate
better committers from the others.

B. Contributions

From the above research questions, we provide contribu-
tions in this paper as follows.

• By understanding that some un-cautious committer
activities can have a bad consequences on the bug
fixing, we would like to suggest OSS’s committers to
be aware of the importance of their roles and to be
cautious in doing their tasks.

• From the seconds RQ, we focus on studying the rea-
sons why some committer acts are more cautious or
uncautious than the others. We would know what is
demanded to be a better committer and to avoid the
incidents that make them less-cautious than the others.

In what following, we introduce our related work in
Section 2 and extraction method in Section 3. Section 4
show the results and process on how we answer our research
questions. Additional interesting results that we are ableto
identify during this work are discussed further in Section 5.
Section 6 describes our limitations and we summarize our
study in Section 7.

II. RELATED WORK AND MOTIVATION

Most of existing studies are focusing on how to reduce
the time to fix bugs since it has been gradually increasing
especially in large OSS projects. There are currently three
promising approaches to improving the bug fixing process.
In what follows, we describe the existing approaches and
our motivation of this study.

A. How to make a good bug report?

A good bug report contributes to reduce the time to
fix bugs because it can help developers to quickly find,
replicate, understand the bugs at hand. However developers’
information needs in bug reports are often unsatisfied, since
users do not know what information are required to fix a
problem and so rarely articulate the problem on software
use as developers can fix it. For instance, users do not
correctly report procedures to reproduce an error (e.g.,
sometimes they just say “This option does not work in my
computer!”). Therefore, developers have to ask users to give
more information again and again to identify and fix the
error. If things go wrong, develoeprs cannot confirm the error
and then leave it unresolved reluctantly.

In order to improve cooperation on a bug report be-
tween developers and users, many studies [5]–[9] have
interviewed with OSS developers and users to understand
the information needs for bug fixing. For example, through
interviews with over 150 developers and 300 reporters of
the Apache, Eclipse and Mozilla projects, Bettenburg et al.
[BettenburgFSE2008] have found that steps to reproduce and
stack traces are most useful in bug reports.

B. Duplicate bug detection

Users often report the same problem that was reported
by another user in the past or that has already been fixed
by developers. Developers also sometimes try to resolve the
same problem which had been resolved in other times. This
can happen because there are a large number of bug reports
in the bug tracking system. Both the users and developers
cannot be aware of all the reported bugs though the searching
function is provided to find bugs reported in the past. In this
manner, the same bugs are duplicated in BTS and then result
in wasting developers’ time and efforts.

To avoid duplicate bugs in BTS, several studies [10]–
[13] have tried to detect duplicate bug reports automatically.
For example, Wang et al. [13] present an approach to
detect duplicate bugs based on a natural language processing
techniques.

C. Re-opening and reassigned bugs

Even if a bug fixing task is assigned to a developer, it
may not be completed by the developer and then reassigned
(tossed[1]) to other developers. This often happens because
a triagger assigns a bug fixing task to an inappropriate
developer who does not have sufficient knowledge and skill
to complete the task. In the Eclipse and Mozilla projects,
37% to 44% of bugs are reassigned to another devleoper
[1]. Preventing the bug tossing (assigning a bug fixing task
to appropriate developers) is very effective to reduce the
time to fix bugs.

Several approaches [1], [14]–[20] exist in this topic. For
instance, Anvik et al. [14], [15] proposed an approach to
assign a bug to an appropriate developer based on past bug
reports with natural language processing. Jeong et al. [1] also
tried to establish a method for the bug assignment based on
a social graph which reflects on social relationships among
developers in the bug assignment. Other approaches involve
in achieving better understandings on why reassignment
occurs many times [18] and in creating a method to predict
which bugs will be reopened or get fixed without being
reopened [19], [20].

D. Cautious and uncautious committers

In contrast with the previous studies above, we are inter-
ested in constructing a method to select committer candi-
dates from existing developers in an OSS project because
we believe that OSS projects should have more committers
to handle a huge amount of bug reports. While the previous
studies basically tried to reduce inefficient efforts in thebug
fixing process, the aim of our study is to enlarge the ability
of fixing bugs.

In general, a dedicated developer is nominated or elected
to promote to a committer in an OSS project [21]. The OSS
project carefully select a developer as a committer candidate
since committers play the important roles as described
earlier. It takes one or two years to be a committer. A



developer who wishes to be a committer has to keep showing
devoted activities to the project for a considerable periodof
time. Due to this promotion process, many of developers
leave the project in a year and OSS projects are always
facing with the difficulty in having more committers who
greatly contribute to the bug fixing process.

In order to find a way to increase committers in OSS
projects, Fujita et al. [4] have examined activities of devel-
opers and committers in the PostgreSQL project and tried to
identify promising developers who were making a significant
contribution equivalent to committers and potentially should
be nominated to be committers in the future. Although the
study found interesting aspects of committer candidates, it
still adhered the current practice of existing committers and
their promotion process in OSS project. In fact, one of their
conclusions was that long-term participation in a project was
the most important aspect to become a committer.

Different from [4], in this paper we would like to look
deeper into existing committers themselves to find committer
candidates who will become “good” committers. Our basic
assumption on committers is that committers are not always
perfect and sometimes make a mistake because they are
also human-beings. Some of them might uncautiously verify
a fixed bug by developers, that would result in creating
reopened bug reports in the future. They also might uncau-
tiously review and accept a patch posted by developers to
fix a bug and them committed it into the repository such as
CVS, that would bring reopen and another bug reports. In
this study we are interested in having a clear understanding
committers’ cautiousness and the consequence on the bug
fixing process and also interested in separating cautious
committers from less-cautious ones to predict good com-
mitter candidates from developers.

III. EXTRACTION METHOD

In this section, we describe how we extracted information
on committers’ activities from the Eclipase-Platform project
for our case study. Firstly we describe how records of
committer’s activities are preserved in OSS development.
Then we introduce our method of extracting the information
to observe committer’s support activities and main activities
respectively.

A. Committers’ activities in the Eclipse-Platform project

When developers are involved in the bug fixing process,
their action are recorded in many formats. In common
with many other OSS projects, Eclipse-Platform had cho-
sen Bugzilla as their BTS where records each committer’s
support activities such as patch reviews and status changes
(e.g., sometimes developers check the resolution of a bug
and mark the bug’s status to “VERIFIED” or “CLOSED”
[3]). Developers in the project can see the information of
the database in the HTML form through a web browser.

The project also use CVS to keep track of their commit
history which is recorded in the plain text format called
“commit log”. By combining the information from both
CVS and BTS, we are able to observe when/why/how each
developer had done something in the bug fixing process.

Using both the commit log and the Bugzilla database as
our data sets, we could collect 85,387 bug report data on
BTS and over 30,833 commit log data on CVS. As a result,
we captured activities of 2,584 different developers from
October 2001 until January 2010.

In order to answer our research questions, first, we need to
identify who are committers, excluding them from thousand
of regular developers in the projects. To our knowledge,
there is no specific activity that can decide whether one
developer is a committer or not. [4] suggests only a rough
description in how they extract their committer list. Based
from their work, they had defined a developer as a commit-
ter, who has a privilege to submit a patch to the software
repository. By using this definition, we managed to extract
our list of committer’s names. When a committer make
a patch commitment, their action is captured and their
name is recorded in commit log’s author field. By using
regular expressions to scan every CVS line, we are able to
identified 74 privilege developer names to create our list of
committers’ names.

From the committer list, we need to collect each com-
mitter’s behavior data. We describe the procedures in the
following separate subsections. In the first subsection we
described how we collect each committer’s support jobs in
BTS, that is, how we studied the footprint of their support
activities left on Bugzilla1. The second section describes how
we observe committer’s main jobs in CVS, that is, how we
collects their patch commitment footprint left on CVS data.

B. Observing committer’s support activities from BTS

In the bug tracking system, each reported bug is identified
by a number called bug-id, attached with other data such as
bug priority, bug status history, developer’s comment, andso
on. Each bug has its own current status varying from NEW,
ASSIGNED, VERIFIED or CLOSED. Some of bug status
have its own resolution to indicate what happened to the bug
such as FIXED, INVALID, and DUPLICATED [3].

Bug status history are used in many researches as a
very useful source of information. Researchers can test a
hypothesis [4], create prediction models [22], or performs
statistical analysis [23]. In this paper, when we describe the
bug status that changed from one to the others in the bug
history, for better clarifications, we presents the bug history
in the form of bug status patterns. We use “⇒” for separation

1Only some committers use the same account name in CVS and BTS.
In order to map between their two accounts, we used automatedmethod to
find an exact-name-match for the committer who use same account name
in both records. For those who did not, we have no choice but tomap each
committer’s name manually.



between bug status. Time dimension is flow from left to
right of the patterns. “...” Symbols represent any or many
bug status changed and we use “()” to show the resolution
of the bug status if it is exist. These bug status pattern can
start from as simple as OPENED⇒ NEW ⇒ ASSIGNED
⇒ RESOLVED (FIXED) to the more complex pattern
such as OPENED⇒ NEW ⇒ ASSIGNED⇒ RESOLVED
(INVALID) ⇒ REOPENED⇒ ASSIGNED⇒ RESOLVED
(WORKSFORME). For the first pattern, we can observe that
the bug has been assigned only once before its resolved. This
type of the pattern usually leads to short or normal bug life
cycle while the more complex one often leads to longer bug
life cycle.

We are able to observe and collects each committer’s
support activities based on this bug status patterns. We could
identified 52,013 of 85,387 bug reports that were involved
by our committers with 4,941 of 30,833 difference bug status
patterns.

C. Observing committer’s main activities from CVS

For Eclipse-Platform’s commit log, we wish we could ob-
served committer’s main behaviors solely from the commit
log as we did in Bugzilla. Unfortunately from this commit
log we can only have a narrower vision of committer’s
activities. It captures revision numbers, date of commit and
some information about source code changes. The descrip-
tion about each change is solely depend on committer’s
opinion. This description field has no centralized format and
often recorded in an ill-organized pattern (some of them are
empty sometimes).

Due to these inconsistencies, the CVS description is not
adequate to judge each committer’s behavior. In order to
overcome this problem, we decided to adapt T. Zimmer-
man’s [24] approach to our study. Their approach has sug-
gest that, despite its inconsistencies, sometimes committer
has mentioned bug-id in the CVS description. By using
bug-id as a trails, we identified it as alinks from the CVS
repository to the bug database. From theselinks we can look
further into the BTS database where we have wider behavior
information to study. The technique on finding theselinks
has been used in many works in this field (e.g., [25], [24]
and [26] has described these links and illustrated it clearly.).
By adapting the Zimmerman’s approach to our study, we
managed to identify 1,193 links from our commit log. Thus,
we could collect each committer’s main activities.

IV. RESULTS

A. RQ1: What are the consequences of committer’s cau-
tiousness to the bug fixing process?

We focus on the consequences of committer’s activities.
We separate the results for this question into two parts:
the consequences of a committer’s main activities and the
consequences of a committer’s support activities.

1) Consequences of committer’s main activities:
APPROACH: As mentioned above, we suspect that

when a committer uncautiously committed the patch that
fixed the bug, this bug might be reopened later to be
resolved again. After compare the bug life cycle of these
Reopen-after-committedbugs with the other bugs that did
not reopened from 1,193 links found from CVS and BTS, we
identified 140 bugs that had been reopened after committers
committed the patches.

FINDING: The result are shown in Fig 1, we can see
that when a bug reopened after patches were committed, the
bugs tend to have longer life cycles.

2) Consequences of committer’s support activities:
APPROACH: As explained earlier, we collected com-

mitter’s support activities by observing the bug status history
and rewrote these status history in the form of patterns.
In order to study the consequence of these patterns to the
bug fixing process, we had randomly choose these patterns
to inspect manually. By focusing only patterns related to
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Figure 1. Box plot comparing the life cycle ofReopen-after-committed
bug and normal bug



committer’s jobs, we can identify two status patterns that
potentially have an negative effects on the bug fixing pro-
cess.

The first pattern shown in Fig 2 (a) we callReopen-
after-verified/closedpattern represents that bugs have been
REOPENED after they had been marked as VERIFIED or
CLOSED (e.g., ...⇒ VERIFIED (FIXED) ⇒ REOPENED
or ... ⇒ CLOSED (FIXED)⇒ REOPENED). We suspect
that this pattern occurs when committers do not cautiously
check a patch before they changed status to VERIFIED. So
this bug has to be reopened later (in worse case, the bug has
been left over and no one reopen it).

The second pattern shown in Fig 2 (b) called
Invalid/Duplicated-after-newindicates that bugs have been
detected as INVALID or DUPLICATE after they had been
marked as NEW (e.g., NEW⇒ ASSIGNED⇒ RESOLVED
(INVALID) or DUPLICATE). In this case, we suspects that
a developer who marked NEW makes a mistake. This bug is
notnewbut actually duplicated or invalid (sometimes invalid
mean it is not even a bug.). In this paper, we will useBad-
status-patternto represent the two bug status patterns above.
We suspect that the bug life cycle followedBad-status-
patternmight be longer, compared to the bugs without such
the bad pattern. Thus, these bugs waste more developers’
time and efforts.

While we manually observe the consequences of each
Bad-status-pattern, we have noticed that there are some
special cases to be considered. For theReopen-after-
verified/closedpattern, we had to exclude results if the
time interval between VERIFIED or CLOSED status and
REOPENED status is longer than a year or one release
cycle. The reasons for this late reopen is usually because
new patch released, new library introduced, or new class in

RESOLVED

FIXED

This resolution 
seems to work

I can reproduce 
the problems

VERIFIED REOPENED

Bug status history

(a) Reopen-after-verified/closedpattern

OPEN

I cannot find 
existing bug, 

NEW

This bug is 
DUPLICATED to 

bug-id 12345

NEW DUPLICATED

Bug status history

(b) Duplicate-after-newpattern

Figure 2. Bad-status-patternsobserved in our study

this version which leads to bug reopen but not because the
developers uncautiously reviewed it and marked this bug as
VERIFIED/CLOSED. Fig 3 (a) has shown the this patterns.

We also manually observed the next pattern called the
Invalid/Duplicated-after-newpattern. We noticed some spe-
cial pattern that we have to exclude them from our result.
We observed that when a bug had been reopened (and some-
times fixed) after it marked asINVALID or DUPLICATED
(e.g., NEW⇒ ASSIGNED⇒ INVALID/DUPLICATE ⇒
REOPENED⇒ RESOLVED (FIXED)), it is a developer
who mark this bug asINVALID/DUPLICATEDfault. They
misunderstood that this bug is invalid or duplicated, which
is actually not. For better clarifications, this pattern is
illustrated in Fig 3 (b).

FINDING: After extracting above patterns from every
bugs in Bugzilla, we were able to identify 405 bugs that
followedReopen-after-verified/closedpatterns with 289 bugs
that has been marked asVERIFIED by committers. The
other bugs are verified or closed by other developers that has
verified permission but does not have commit permission.
Thus, they are not committers. And for 696 bugs that
followed Duplicate/Invalid-after-new patterns, there were
470 patterns that had been marked as new by our committers.

By using only bug reports that are involved with
the committers (total of 52,013 bug reports), we use
a box plot to compare the bug life cycle between the
bugs that followedReopen-after-verified/closedpatterns,
Invalid/Duplicated-after-newpatterns , to other bugs that
our committer has been involved. There were 51,254 bug
reports that does not followBad-status-pattern. The results
show significant difference number of days between these
bugs. Unsurprisingly that the bugs where a committer made
a mistake has longer bug life cycle.

RESOLVED

FIXED

VERIFIED REOPENED

Bug status history
1 Release cycle 

or 1 year

New patch has 
triggered the bug 

(a) Reopen-after-verified/closedpattern with late reopen

OPEN NEW DUPLICATED

Bug status history

This bug has 
already been 

reported.

REOPENED

No, It is not. It is 
actually NEW.

(b) Mistakenly marked asInvalid/Duplicatedpattern

Figure 3. The other patterns excluded from our results
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Figure 4. Box plot comparing the bug’s life cycle that followed
Invalid/Duplicated-after-newpatterns andReopen-after-verified/closedpat-
terns with normal bugs

B. RQ 2: What characteristics are related to more cautious-
ness committer? and how about the lesser ones?

APPROACH: In order to find the reasons (related
characteristics) why one committer are better than the oth-
ers, we use the following process to answer this research
question:

• Categorize each committer into 4 groups based on
their activities count. Group of committer who actively
commit the patches, actively modify the bugs in BTS,
Both activity, and Low activity.

• Evaluate a committer in each groups based on their
activities history (i.e., For the committer who actively
commit the patches, we evaluate the committers in
this group from more to less cautious by using their
number ofReopen-after-committedpatches, the higher
the number the less cautious)

• We look further into each of these evaluated committer.
Try to find which characteristic(s) is relate to the com-
mitter who is more cautious and which characteristic(s)
often leads to less cautious committer.

While we are collecting each committer history, we can
identify that there are wide range in number of BTS and
CVS activities. We have noticed that some committers have
contribute themselves to the patch commitment and have
CVS activity count over thousands. While some committers
had prefered to involve in more BTS’s bugs. From this
wide range of activity, it would not be fair to evaluate them
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Figure 5. Show how we categorize each committer’s type basedon their
activities count. Please be noted that, in order to separatethe committer in
each groups, we use histograms combining with some manual adjustment
to create the threshold for categorize the committers.

without normalize. So, we categorize them into 4 groups
base on their activity count.

1) Committer who actively commit the patches (G1):
Some committers are only prefer to review and commit
a patches into repository. This type of committers have
relatively high number of patches committed compared to
the number of bug status changed. (They actively doing
their main jobs.) In order to evaluate a committers in this
group we use theirReopen-after-committedrate, calculated
by counting number ofReopen-after-committedpatches di-
vided by number of patch commitments. Committer who
cautiously review the patch before they commit would have
lower rate than the one who does not.

2) Committer who actively support other developers
(G2): In contrast with above group. Some committers have
high number of bug status changed, they actively doing their
support jobs. With their low commitment count, their com-
mit activities in CVS solely is un-adequate to judge them.
So, we evaluate each committer using got aBad-status-
pattern rate (The number ofBad-status-patterndivided by
number of others patterns in BTS.) The lower the rate, the
better committer they are.

3) Committer who active in both jobs (G3):Some com-
mitters are very active in both fixed a bugs and committed
the patch. For committer in this groups we can use both of
their activities history to judge them.

4) Low activity committer (G4):These committers show
no significant activities in both BTS and CVS. Their activ-
ities are too low to be considered. As a results, we have to
exclude the results of this group from our analysis.

FINDING: After we evaluate the committer in each
group, now we can answer our research question. We use
correlation coefficient as a statistical tool to find a linear
relationship between the committer’s characteristics andthe
more cautious or less cautious committer in each group. We



Table I
RESULTS OFRQ2

correlation coefficient
Metrics Description G1 G2 G3

Reopen after
committed Bad pattern

Reopen after
committed Bad pattern

BR
Bad-pattern rate, number of Reopen-after-verified/closedand
Invalid/Duplicate-after-new divide by support activities count -0.25 1.00 -0.26 1.00

RAC
Reopen-after-committed rate, number of bug that has been Reopen-
after-committed divide by number of links found. 1.00 -0.22 1.00 -0.26

MB Median value of each committer’s bug life cycle -0.14 -0.21 -0.45 0.34
SA Number of activities s/he shown in a Bug Tracking System -0.35 -0.12 -0.26 0.13
PJ Period of time s/he has joining the projects -0.34 0.05 -0.32 0.39

CM Number of months s/he show activities as a committer -0.68 -0.02 -0.37 0.34

CDT
Time intervals between latest bug status before s/he decideto commit
it to Commit log 0.17 -0.15 0.37 -0.21

MRT
Median value of Bug Review Time, Time before he decided to
VERIFIED/CLOSED the bug -0.22 -0.10 -0.20 0.17

ART
Average of Bug Review Time, Time before he decided to VERI-
FIED/CLOSED the bu g 0.04 -0.24 -0.19 0.06

RSC Number of time s/he RESOLVED the bug 0.08 -0.11 -0.26 0.14
AC Number of time s/he ASSIGNED the bug -0.26 -0.09 -0.23 0.11
FC Number of time s/he FIXED the bug -0.29 -0.13 -0.24 0.11

ROC Number of time s/he REOPENED the bug -0.39 -0.04 -0.28 0.29
VC Number of time s/he VERIFIED/CLOSED the bug -0.26 -0.16 -0.16 0.04
NC Number of time s/he NEW the bug -0.24 -0.09 -0.14 0.08

MRST Mean value of bug resolving time -0.05 -0.09 -0.08 -0.11
ARST Average value of bug resolving time 0.14 -0.39 -0.15 -0.11

suspects many characteristics that might be involved with
each committer’s behavior results such as more cautious
committer might have a longer review time, or when some
committers have more patches committed, they might leads
to lowerReopen-after-committedrate. In this paper, we have
compared each committer with the total of 16 characteristics,
description about each characteristics and results are shown
in Table 1.

V. DISCUSSION

In this section, we discussed with a results from our
research questions and additional results we can find during
our research.

A. Findings

Some committer’s un-cautious activities can have neg-
ative effects to the bug fixing process:From our first
research question’s results, we suspects some activities that
potentially has a negative consequence and we compared it
with normal activities. We can identified that the patch that
has beenReopen-after-committedor the bugs that followed
Bad-status-patterns are have longer life cycles compare to
the others bug. From this results, we wish to make a humbly
suggestion to an OSS’s committer to be aware of their
importance to the bug fixing process. When they are not
cautiously doing their jobs, its might extend the bug life
cycles.

More experienced committer tends to submit cleaner
patch.: For G1, committer who active in CVS, as shown in
Table 1, The CM Metrics, number of committer months, and
Reopen-after-committedrate show significant negative linear
relationship with correlation coefficient of -0.68. From this
results we could see that, interestingly, when s/he has been
promoted to be a committer for longer period of time, her/his
submitted patches are tends to be cleaner. In the other words,
the more s/he experienced the more s/he act cautiously.

B. Additional Results

Additional from the results from our RQ, we shown our
other findings during our research in the following

Committer who mistakenly verified/closed tends to
mistakenly new the bug:After we answer our research
questions, we suspects that if the committer have high
number of Reopen-after-verified/closedbugs, they might
have relatively high number ofInvalid/Duplicated-after-new
bugs. In the other words, when committer’s negligently
VERIFIED/CLOSEDbug, they are likely to negligently
marked the bug status asNEW. So we look further into the
committer who actively support other developers group (G2),
Fig 5 show the box plot between these two patterns. We can
determined that high number of falseVERIFIED/CLOSED
are leads to high number falseNEW.

No relationship between CVS mistake and BTS mistake:
From our second research question, we suspects that if
committer not cautious before decided to commit the patch
in CVS, they might not cautiously change bug status in BTS
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Figure 6. Box plot show the relationship between number ofReopen-
after-verified/closedbugs andInvalid/Duplicated-after-newbugs.

either. Interestingly, From the committer who active in both
jobs (G3 from the Table 1), after observed the relationship
between theirReopen-after-committedrate andBad-status-
pattern rate (Metrics RAC and BR respectively). The result
show no significant linear relation between two values with
correlation coefficient of -0.26. One explanation is that
because their wide range of activities, committer’s footprint
are found scattered all over the place, their activities count
are distributed nonuniformly. More simple explanation is
when a committer decided to change bug status in BTS,
committer use difference kind of “cautiousness” from the
patch commitment in CVS.

Not all reopen are bad:When we observe the bug
status patterns in BTS, contradict to popular belief, we
have found that not all reopen has negative effect to the
project. In Eclipse-Platform, we can identified that there are
6 types of reopen. Each type has difference impact to the
bug life cycle. Some patterns show that reopen can have
positive effect such as ...⇒ RESOLVED(WONTFIX) ⇒
REOPENED⇒ ASSIGNED⇒ RESOLVED(FIXED). We
manually observed this patterns, found that some developers
simply change the bug resolution to WONTFIX because they
do not have enough knowledge to fix it. Which later has been
REOPENED and fixed by other developer. Other example is
the reopened-after-later pattern ( ...⇒ RESOLVED(LATER)
⇒ REOPENED ), this reopen are actually intended, LATER
resolutions usually mean this bug must wait for the new

patch to be fixed, this is not the target milestones, or need
some minor tweaks later. We want to make suggestion to
another researchers who use bug status pattern in their work
to be aware of these several types of reopen and their
difference impacts.

VI. LIMITATIONS

CVS activities data limitations:In our extraction pro-
cess, we have collect each committer’s patch commitment
activities by observed CVS description that has a link to
the bug database. Unfortunately, this collected links number
are considered to be small portions compared to all of the
activities in CVS. From 30,833 commits in commit log, we
can identified only 1,193 links with a unique bug-id. To
reduce the bias resulted from a sample size, our goal is
to capture as largest representation of population as we can.
As we explained earlier, we (hopefully) archives this goal by
adapting [24] approach in order to overcome this limitations.

Interpreting the bug status pattern:We acknowledge
that observing the developer’s works solely based on bug
status pattern has some limitations. One status pattern can
has severals meaning or can be interpreted many ways,
such as the ...⇒ REOPENED⇒ ASSIGNED⇒ NEW ⇒
RESOLVED(INVALID) patterns. Let A be a developer who
reopens this bug, and B be another developer who changes
its status to resolved and add invalid to it’s resolution. We
can interpret this pattern in two ways.

First, If A decided that this bug has to be reopened ( i.e.,
due to new patch,class,library or other reasons) , assigned
this bug to B. Later B has found out that it is not valid (
i.e., not a bug, false reproduce etc.). In this case, it is an A’s
fault.

For the second case, if this bug has never been fixed before
and A suspect that this bug is invalid, so A decided to reopen
this bug, assigned to B, asked B whether this bug is invalid or
not. Then, B helps A confirm that this bug is really invalid.
Thus A has helped shorten the bug’s life cycle.

In order to optimize our result accuracy, we have ran-
domly select some bugs to observe their status pattern man-
ually. We satisfactorily found that most of the patterns used
in this research are straight forward, we can easily identify
a developer who mistakenly verified or new the bug from
the Reopen-after-verified/closedand theInvalid/Duplicated-
after-newpatterns respectively.

In RQ1, we observe only activities that we suspects its
potentially have negative effect to the bug fixing process,
there might be more activities that leads to the same results
which we will include it in our future works. For the
committer’s characteristics we observe in Table 1. We also
noticed that there might be more committer’s activities that
we did not observed, which can leads to more results either.

Please be noted that results from this research is focus
only on Eclipse-Platform development community. This
community structure are well-organized and have full-time



workers (like commercial development community). Differ-
ence OSS community can have difference structural which
will reflects difference result from the same approach

VII. CONCLUSION

In this paper, we have focus on a developer who plays
major role in bug fixing process calledCommitter. We have
suspects that, when the bugs are taken care by more cautious
developer (and verified by cautious committer), their life
cycles might be shorter. We identified committer’s activities
that have difference consequences to the bug fixing process,
categorize each committer based on their behavior and then
find a related characteristics that separated a good committer
over the bad ones. Our findings can be summarized as
follows

• We are able to determined the patches that have been
reopen after it was committed and showing that, when
the committer commit the patch and that patch had to
be reopened later, its tends to have longer life cycle.

• We categorize severals bug status patterns, show that
when the bugs have its status followedBad-status-
pattern, they have longer bug life cycle than the bugs
with other patterns.

• From wide range of their activities, we can identified
4 types of committer based on their behavior count.
Active in CVS, in BTS, Both active and Low active.

• We can identified that, for committer who active in
CVS, more experienced committers tends to commit
cleaner patches, with lowerReopen-after-committed
rate.

In order to observe variation of the results reflected from
the difference community, our future works will apply the
approaches used in this research to another OSS projects,
finding more characteristics that related to each type of
committer, find the potential developer’s characteristicsthat
can leads to more cautious committer. We also would like
to observe another developer’s role in the OSS’s bug fixing
process, and hopefully received a useful results that can
benefit all OSS community.

VIII. ACKNOWLEDGMENT

The first author is grateful to the internship program
cooperated and supported between Kasetsart University,
Thailand, and Nara Institute of Science and Technology,
JAPAN. It bestows a grant as well as an opportunity for
undergraduate student to achieve a wealth experience in
abroad graduated school research. This research is being
conducted as a part of the Next Generation IT Program
and Grant-in-aid for Young Scientists (B), 22700033, 2010
by the Ministry of Education, Culture, Sports, Science and
Technology, Japan.

REFERENCES

[1] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage
with bug tossing graphs,” inProceedings of the the 7th joint
meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of
software engineering (ESEC/FSE’09), 2009, pp. 111–120.

[2] Bugzilla, “Bug tracking system,” http://www.bugzilla.org/.

[3] The Bugzilla Team, “The Bugzilla Guide: 5.4. Life Cycle
of a Bug,” http://www.bugzilla.org/docs/3.4/en/html/Bugzilla-
Guide.html.

[4] S. Fujita, M. Ohira, A. Ihara, and K. ichi Matsumoto, “An
analysis of committers toward improving the patch review
process in oss development,” inSupplementary Proceedings
of the 21st IEEE International Symposium on Software Reli-
ability Engineering (ISSRE2010), November 2010, pp. 369–
374.

[5] N. Bettenburg, S. Just, A. Schröter, C. Weiß, R. Premraj,
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