Good or Bad Committers?
A Case Study of Committers’ Cautiousness and the Conseque@s on
the Bug Fixing Process in the Eclipse Project

Anakorn Jongyindee Masao Ohird, Akinori lhara’, and Ken-ichi Matsumoto
*Faculty of Computer Engineering, Kasetsart Universityngkok, Thailand
fGraduate School of Information Science, Nara Institute @iéSce and Technology, Nara, Japan
Email: *b5105896@ku.ac.th{masao, akinori-i, matumol@is.naist.jp

Abstract—There are many roles to play in the bug fixing
process in open source software development. A developer
called “Committer” who has a permission to submit a patch
into software repository play a major role in this process am
hold a key to the successfulness of the project. In this work,
we have observed each committer activities from the Eclipse
Platform bug tracking system and version archives. Despit¢he
importance of committer’s activities, we suspect that soménes
committers can make some mistakes, which have a negative
consequence to the bug fixing process. Our research focus on
studying the consequences of each committer's activitiesot
this process. We collected each committer’s history data ah
evaluated each of them by comparing the more cautiousness
to less cautiousness committers. Then we looked deeper into
each committer’'s characteristics to see the reasons why sem
committers tend to make a mistake more than the others. From
our results, we would like to make a humbly suggestion to
the OSS’s committers to be aware of their importance to the
projects and be cautious before doing their jobs.

Keywords-open source software (OSS); committer; bug fixing
process

I. INTRODUCTION

Bugzilla. Each bug report in this process is passed through
one or more developers who play different roles before it is
closed.

In this study, we focus on a developer who has a priv-
ilege to submit patches into the software repository, dalle
Committer This group of developers play major roles in
the bug fixing process [4]. Their main task is to review
(sometimes edit) patches posted from other developers and
then submit them into the software repository. Some of them
also perform other tasks including bug resolution and bug
reports management. Using a concurrent versions system
(CVS) and bug tracking system (BTS), they resolve bugs by
themselves, join discussions about bugs, verify fixed bygs b
developers, close bug reports, and so forth. As just destyib
committers’ activities are vital for sustaining and impircy
the quality of OSS products.

However, committers are not always perfect. They some-
time make a mistake. For instance, they uncautiously varify
bug report resolved by a developer and close the bug report,
but this uncoutious act can result in creating another bug

These days Open Source Software (OSS) has been aeport for the same bug again (i.e., reopen bug). In this
tracting a great deal of attention from a variety of areaspaper we are interested in creating a clear understanding
as an alternative way of software use and developmentn committers’ cautiousness and their consequences on the
For instance, the Google’s Android operating system ha$ug fixing process, in order to find a better way to improve
become the best-selling smart phone platform. Currentlghe bug fixing process in OSS projects.

OSS products has a large impact on not only end-users but

also company users such as manufacturers of mobile devic

A Research questions

since they need to exploit OSS to produce their end products. Selecting Eclipse-Platform’s version archives (CVS) and
As OSS has become more common and popular amonigug tracking database (BTS) as the information source of

us, however, OSS projects are facing with a big challengeur case study, in this paper we ask the following research
to their quality assurance activities. Due to the growingrus questions.

base, especially large OSS projects such as the Mozilla and RQ1: What are the consequences of committer’s
Eclipse projects receive a considerable amount of bug teporcautiousness to the bug fixing processth this question,
from the users on a daily basis [1] (e.g., several hundred buge study the committer’'s cautiousness and its effects to the
reports are posted to the Bugzilla [2] database of the Mozill bug fixing process. Then we compared the consequence of
project every day). OSS projects require finding an effectiv more cautious activities to the lesser one.

way of dealing with a large number of bug reports. RQ2: What characteristics are related to more cau-

In an OSS project, a bug is fixed through the bug fixingtious committers? and how about the lesser oneWith
process [3] which is a process of fixing the bug from thethis question, we suspects that committer who are more
bug was reported in the project until patches for fixing thecautious should have some characteristics different from
bug has been submitted into a software repository such abe less-cautious one. We classify, evaluate and compare

each committer, attempts to find characteristics that s¢par B. Duplicate bug detection

better committers from the others. Users often report the same problem that was reported

B. Contributions by another user in the past or that hgs already been fixed
. . . by developers. Developers also sometimes try to resolve the

. From th_e above research questions, we provide COntrIbLEame problem which had been resolved in other times. This

tions in this paper as follows. can happen because there are a large number of bug reports

« By understanding that some un-cautious committefin the bug tracking system. Both the users and developers
activities can have a bad consequences on the bugannot be aware of all the reported bugs though the searching
fixing, we would like to suggest OSS’s committers to fynction is provided to find bugs reported in the past. In this
be aware of the importance of their roles and to bemanner, the same bugs are duplicated in BTS and then result
cautious in doing their tasks. in wasting developers’ time and efforts.

« From the seconds RQ, we focus on studying the rea- To avoid duplicate bugs in BTS, several studies [10]—
sons why some committer acts are more cautious 0f13] have tried to detect duplicate bug reports automagical
uncautious than the others. We would know what isgqy example, Wang et al. [13] present an approach to
demanded to be a better committer and to avoid thejetect duplicate bugs based on a natural language progessin
incidents that make them less-cautious than the Otherfﬁechniques.

In what following, we introduce our related work in
Section 2 and extraction method in Section 3. Section
show the results and process on how we answer our researchEven if a bug fixing task is assigned to a developer, it
questions. Additional interesting results that we are able may not be completed by the developer and then reassigned
identify during this work are discussed further in Section 5 (tossed1]) to other developers. This often happens because
Section 6 describes our limitations and we summarize ou@ triagger assigns a bug fixing task to an inappropriate
study in Section 7. developer who does not have sufficient knowledge and skill

to complete the task. In the Eclipse and Mozilla projects,
Il. RELATED WORK AND MOTIVATION 37% to 44% of bugs are reassigned to another devleoper

Most of existing studies are focusing on how to reduce[1]. Preventing the bug tossing (assigning a bug fixing task
the time to fix bugs since it has been gradually increasingo appropriate developers) is very effective to reduce the
especially in large OSS projects. There are currently threéme to fix bugs.
promising approaches to improving the bug fixing process. Several approaches [1], [14]-[20] exist in this topic. For
In what follows, we describe the existing approaches andnstance, Anvik et al. [14], [15] proposed an approach to
our motivation of this study. assign a bug to an appropriate developer based on past bug
reports with natural language processing. Jeong et all§a] a
tried to establish a method for the bug assignment based on

A good bug report contributes to reduce the time toa social graph which reflects on social relationships among
fix bugs because it can help developers to quickly finddevelopers in the bug assignment. Other approaches involve
replicate, understand the bugs at hand. However developerng achieving better understandings on why reassignment
information needs in bug reports are often unsatisfiedesincoccurs many times [18] and in creating a method to predict

users do not know what information are required to fix awhich bugs will be reopened or get fixed without being
problem and so rarely articulate the problem on softwargeopened [19], [20].

use as developers can fix it. For instance, users do not]]]
correctly report procedures to reproduce an error (e.gD- Cautious and uncautious committers
sometimes they just say “This option does not work in my In contrast with the previous studies above, we are inter-
computer!”). Therefore, developers have to ask users ® givested in constructing a method to select committer candi-
more information again and again to identify and fix thedates from existing developers in an OSS project because
error. If things go wrong, develoeprs cannot confirm thererrowe believe that OSS projects should have more committers
and then leave it unresolved reluctantly. to handle a huge amount of bug reports. While the previous
In order to improve cooperation on a bug report be-studies basically tried to reduce inefficient efforts in Hugy
tween developers and users, many studies [5]-[9] havéxing process, the aim of our study is to enlarge the ability
interviewed with OSS developers and users to understanaff fixing bugs.
the information needs for bug fixing. For example, through In general, a dedicated developer is nominated or elected
interviews with over 150 developers and 300 reporters ofo promote to a committer in an OSS project [21]. The OSS
the Apache, Eclipse and Mozilla projects, Bettenburg et alproject carefully select a developer as a committer canelida
[BettenburgFSE2008] have found that steps to reproduce argince committers play the important roles as described
stack traces are most useful in bug reports. earlier. It takes one or two years to be a committer. A

£ Re-opening and reassigned bugs

A. How to make a good bug report?

developer who wishes to be a committer has to keep showing The project also use CVS to keep track of their commit
devoted activities to the project for a considerable peabd history which is recorded in the plain text format called
time. Due to this promotion process, many of developerscommit log”. By combining the information from both
leave the project in a year and OSS projects are alway€VS and BTS, we are able to observe when/why/how each
facing with the difficulty in having more committers who developer had done something in the bug fixing process.
greatly contribute to the bug fixing process. Using both the commit log and the Bugzilla database as
In order to find a way to increase committers in OSSour data sets, we could collect 85,387 bug report data on
projects, Fujita et al. [4] have examined activities of deve BTS and over 30,833 commit log data on CVS. As a result,
opers and committers in the PostgreSQL project and tried tave captured activities of 2,584 different developers from
identify promising developers who were making a significantOctober 2001 until January 2010.
contribution equivalent to committers and potentially sldo In order to answer our research questions, first, we need to
be nominated to be committers in the future. Although theidentify who are committers, excluding them from thousand
study found interesting aspects of committer candidates, iof regular developers in the projects. To our knowledge,
still adhered the current practice of existing committerd a there is no specific activity that can decide whether one
their promotion process in OSS project. In fact, one of theirdeveloper is a committer or not. [4] suggests only a rough
conclusions was that long-term participation in a projeasw description in how they extract their committer list. Based
the most important aspect to become a committer. from their work, they had defined a developer as a commit-
Different from [4], in this paper we would like to look ter, who has a privilege to submit a patch to the software
deeper into existing committers themselves to find committerepository. By using this definition, we managed to extract
candidates who will becomegbod’ committers. Our basic our list of committer's names. When a committer make
assumption on committers is that committers are not alwaya patch commitment, their action is captured and their
perfect and sometimes make a mistake because they amame is recorded in commit log’s author field. By using
also human-beings. Some of them might uncautiously verifyegular expressions to scan every CVS line, we are able to
a fixed bug by developers, that would result in creatingidentified 74 privilege developer names to create our list of
reopened bug reports in the future. They also might uncausommitters’ names.
tiously review and accept a patch posted by developers to From the committer list, we need to collect each com-
fix a bug and them committed it into the repository such agmitter’s behavior data. We describe the procedures in the
CVS, that would bring reopen and another bug reports. Irfollowing separate subsections. In the first subsection we
this study we are interested in having a clear understandindescribed how we collect each committer's support jobs in
committers’ cautiousness and the consequence on the blRJ'S, that is, how we studied the footprint of their support
fixing process and also interested in separating cautiouactivities left on Bugzilld. The second section describes how
committers from less-cautious ones to predict good comwe observe committer's main jobs in CVS, that is, how we
mitter candidates from developers. collects their patch commitment footprint left on CVS data.

Il. EXTRACTION METHOD B. Observing committer's support activities from BTS

In this section, we describe how we extracted informatiorb In the bgg traiklggbsysygm,tteazh (;epa;]te(:hbug d|st|dent|2ed
on committers’ activities from the Eclipase-Platform g ﬁ a r;:Jorﬂt eLﬁa statu:gr;ilst,o? adce\?elowzar'socoi'rlmir?t S;JD:: d as
for our case study. Firstly we describe how records oib gp h t))/ r? : Y, P ing f '
committer’'s activities are preserved in OSS developmenton' Each bug has its own current status varying from NEW,
Then we introduce our method of extracting the informationASSIGNED’ VERIFIED or CLOSED. Some of bug status
to observe committer's support activities and main adgsit

respectively.

have its own resolution to indicate what happened to the bug
such as FIXED, INVALID, and DUPLICATED [3].

Bug status history are used in many researches as a
very useful source of information. Researchers can test a
hypothesis [4], create prediction models [22], or performs

When developers are involved in the bug fixing processstatistical analysis [23]. In this paper, when we descritee t
their action are recorded in many formats. In commonpyg status that changed from one to the others in the bug
with many other OSS projects, Eclipse-Platform had cho+jstory, for better clarifications, we presents the buganjst

sen Bugzilla as their BTS where records each committer'sn the form of bug status patterns. We use™for separation
support activities such as patch reviews and status changes
(e.g., sometimes developers check the resolution of a bug!only some committers use the same account name in CVS and BTS.

and mark the bug's status to “VERIFIED” or “CLOSED?” !n order to map between their two accounts, we used autonmaétdod to
find an exact-name-match for the committer who use same atcame

[3])- Develope_rs in the project can see the information ofiy ot records. For those who did not, we have no choice butgp each
the database in the HTML form through a web browser. committer's name manually.

A. Committers’ activities in the Eclipse-Platform project

between bug status. Time dimension is flow from left to IV. RESULTS

right of the patterns. “...” Symbols represent any or manya RQ1: What are the consequences of committer's cau-
bug status changed and we use “()” to show the resolutiofoysness to the bug fixing process?

of the bug status if it is exist. These bug status pattern can
start from as simple as OPENEB NEW =- ASSIGNED
= RESOLVED (FIXED) to the more complex pattern
such as OPENER> NEW = ASSIGNED=- RESOLVED
(INVALID) = REOPENED=- ASSIGNED=- RESOLVED o . o
(WORKSFORME). For the first pattern, we can observe that 1) Consequences of committer's main activities:

the bug has been assigned only once before its resolved. Thi APPROACH: As mentioned above, we suspect that
9 9 y - When a committer uncautiously committed the patch that

type of the pattern usually leads to short or normal bug "fefixed the bug, this bug might be reopened later to be
cycle while the more complex one often leads to longer bug}esolved again. After compare the bug life cycle of these

“fe\/\fgcié able to observe and collects each committerscoPeN-after-committeugs with the other bugs that did

o Ve ¢ e ot reopened from 1,193 links found from CVS and BTS, we
support activities based on this bug status patterns. \/\laﬁicou.dentified 140 bugs that had been reopened after committers
identified 52,013 of 85,387 bug reports that were involved

by our committers with 4,941 of 30,833 difference bug statuscomrgllt[\tleDletge_ p‘la'lacehfséult are shown in Fig 1, we can see
patterns. that when a bug reopened after patches were committed, the

C. Observing committer's main activities from CVS bugs tend to have longer life cycles.

For Eclipse-Platform’s commit log, we wish we could ob-
served committer's main behaviors solely from the commit 2) Consequences of committer's support activities:
log as we did in Bugzilla. Unfortunately from this commit APPROACH: As explained earlier, we collected com-
log we can only have a narrower vision of committer’s Mitter's support activities by observing the bug statugans
activities. It captures revision numbers, date of commit an @nd rewrote these status history in the form of patterns.
some information about source code changes. The descrigl order to study the consequence of these patterns to the
tion about each change is solely depend on committer®ug fixing process, we had randomly choose these patterns
opinion. This description field has no centralized format an t0 inspect manually. By focusing only patterns related to
often recorded in an ill-organized pattern (some of them are
empty sometimes).

Due to these inconsistencies, the CVS description is not
adequate to judge each committer's behavior. In order to
overcome this problem, we decided to adapt T. Zimmer-
man'’s [24] approach to our study. Their approach has sug-
gest that, despite its inconsistencies, sometimes coemmitt
has mentioned bug-id in the CVS description. By using
bug-id as a trails, we identified it asliaks from the CVS
repository to the bug database. From thigges we can look
further into the BTS database where we have wider behavio
information to study. The technique on finding thdises
has been used in many works in this field (e.g., [25], [24]
and [26] has described these links and illustrated it ¢jarl
By adapting the Zimmerman’s approach to our study, we
managed to identify 1,193 links from our commit log. Thus, o -
we could collect each committer's main activities.

We focus on the consequences of committer’s activities.
We separate the results for this question into two parts:
the consequences of a committer's main activities and the
consequences of a committer’s support activities.

500
|
0 0OWOO

50
|

Bug life cycle Tbays)

10

T T
Reopen.after.committed Others

Figure 1. Box plot comparing the life cycle &eopen-after-committed
bug and normal bug

committer’'s jobs, we can identify two status patterns thathis version which leads to bug reopen but not because the
potentially have an negative effects on the bug fixing pro-developers uncautiously reviewed it and marked this bug as
cess. VERIFIED/CLOSED. Fig 3 (a) has shown the this patterns.
The first pattern shown in Fig 2 (a) we cdleopen- We also manually observed the next pattern called the
after-verified/closedattern represents that bugs have beernvalid/Duplicated-after-nevpattern. We noticed some spe-
REOPENED after they had been marked as VERIFIED orcial pattern that we have to exclude them from our result.
CLOSED (e.g., ..~ VERIFIED (FIXED) = REOPENED We observed that when a bug had been reopened (and some-
or ...= CLOSED (FIXED)= REOPENED). We suspect times fixed) after it marked aNVALID or DUPLICATED
that this pattern occurs when committers do not cautiouslye.g., NEW=- ASSIGNED =- INVALID/DUPLICATE =
check a patch before they changed status to VERIFIED. SREOPENED=- RESOLVED (FIXED)), it is a developer
this bug has to be reopened later (in worse case, the bug hago mark this bug asNVALID/DUPLICATEDfault. They
been left over and no one reopen it). misunderstood that this bug is invalid or duplicated, which
The second pattern shown in Fig 2 (b) calledis actually not. For better clarifications, this pattern is
Invalid/Duplicated-after-nevindicates that bugs have been illustrated in Fig 3 (b).
detected as INVALID or DUPLICATE after they had been FINDING: After extracting above patterns from every
marked as NEW (e.g., NEWA- ASSIGNED=- RESOLVED bugs in Bugzilla, we were able to identify 405 bugs that
(INVALID) or DUPLICATE). In this case, we suspects that followed Reopen-after-verified/closgatterns with 289 bugs
a developer who marked NEW makes a mistake. This bug ithat has been marked ag&RIFIED by committers. The
notnewbut actually duplicated or invalid (sometimes invalid other bugs are verified or closed by other developers that has
mean it is not even a bug.). In this paper, we will &d- verified permission but does not have commit permission.
status-patterrio represent the two bug status patterns aboveThus, they are not committers. And for 696 bugs that
We suspect that the bug life cycle followdshd-status- followed Duplicate/Invalid-after-new patterns, there reve
patternmight be longer, compared to the bugs without such470 patterns that had been marked as new by our committers.
the bad pattern. Thus, these bugs waste more developers’By using only bug reports that are involved with
time and efforts. the committers (total of 52,013 bug reports), we use
While we manually observe the consequences of each box plot to compare the bug life cycle between the
Bad-status-patternwe have noticed that there are somebugs that followed Reopen-after-verified/closegatterns,
special cases to be considered. For tReopen-after- Invalid/Duplicated-after-newpatterns , to other bugs that
verified/closedpattern, we had to exclude results if the our committer has been involved. There were 51,254 bug
time interval between VERIFIED or CLOSED status andreports that does not folloBad-status-patternThe results
REOPENED status is longer than a year or one releasshow significant difference number of days between these
cycle. The reasons for this late reopen is usually becaudeugs. Unsurprisingly that the bugs where a committer made
new patch released, new library introduced, or new class i mistake has longer bug life cycle.

| can reproduce New patch has
the problems triggered the bug

\/

This resolution
seems to work

% > Bug status history . élease cycle 2¥=—"> Bug status history
RESOLVED VERIFIED REOPENED resoved W verFiED |
FIXED FIXED

(2) Reopen-after-verified/closquhttern (a) Reopen-after-verified/closguhttern with late reopen

| cannot find
existing bug,

This bug is
DUPLICATED to
bug-id 12345

This bug has
already been
reported.

Bug status history Bug status history

DUPLICATED REOPENED

(b) Duplicate-after-newpattern (b) Mistakenly marked avalid/Duplicatedpattern

Figure 2. Bad-status-patternsbserved in our study Figure 3. The other patterns excluded from our results

| g8 8
1 QG|4a g G1

H . #Patch committed

500
|

#Bug status changed

Bug life cycle (Days)
50

\/

H Figure 5. Show how we categorize each committer’s type bagettheir
activities count. Please be noted that, in order to sep#nateommitter in
each groups, we use histograms combining with some manjstacent
to create the threshold for categorize the committers.

I I I
A B C
A: Invalid/Duplicated-after-new B: Reopen-after-verified/closed C: Others

without normalize. So, we categorize them into 4 groups
base on their activity count.

Figure 4.~ Box plot comparing the bug's life cycle that follesy 1) Committer who actively commit the patches (G1):
Invalid/Duplicated-after-newpatterns andReopen-after-verified/closegat- . . .
terns with normal bugs Some committers are only prefer to review and commit

a patches into repository. This type of committers have

relatively high number of patches committed compared to

the number of bug status changed. (They actively doing
B. RQ 2: What characteristics are related to more cautious+their main jobs.) In order to evaluate a committers in this
ness committer? and how about the lesser ones? group we use theiReopen-after-committegite, calculated

APPROACH: In order to find the reasons (related Py counting number oReopen-after-committepatches di-
characteristics) why one committer are better than the othvided by number of patch commitments. Committer who

ers, we use the following process to answer this researcfutiously review the patch before they commit would have
question: lower rate than the one who does not.

. . _ 2) Committer who actively support other developers

* Cat_egor!z_el each commitier into 4 groups basgd Or(GZ): In contrast with above group. Some committers have

their a.Ct'V't'eS count, Grqup of commltter who a_\ctwely high number of bug status changed, they actively doing their
commit the patches, actively modify the bugs in BTs’support jobs. With their low commitment count, their com-

EOtT activity, and I.‘OW aCt'V'tyh based h .mit activities in CVS solely is un-adequate to judge them.
e Bva ‘_’?‘ter"]"_ commltterFm er?c groups aie on tle'éo, we evaluate each committer using goBad-status-
activities history (i.e., For the committer who act|vey_ patternrate (The number oBad-status-pattermivided by

commit the patches, we evaluate. the COMMIUErS Iy mper of others patterns in BTS.) The lower the rate, the
this group from more to less cautious by using the|rbetter committer they are

number ofReopen-after-committeghatches, the higher

; 3) Committer who active in both jobs (G3gome com-
the number the less cautious)

_ . mitters are very active in both fixed a bugs and committed
« We look further into each of these evaluated committery, o haich For committer in this groups we can use both of
Try to find YVhICh charagterlstlc(s) is relate to the. COM- 4 eir activities history to judge them.
mitter who is more cauu_ous and whlch characteristic(s) 4) Low activity committer (G4)These committers show
often leads to less cautious committer. no significant activities in both BTS and CVS. Their activ-
While we are collecting each committer history, we canities are too low to be considered. As a results, we have to
identify that there are wide range in number of BTS andexclude the results of this group from our analysis.
CVS activities. We have noticed that some committers have FINDING: After we evaluate the committer in each
contribute themselves to the patch commitment and havgroup, now we can answer our research question. We use
CVS activity count over thousands. While some committerscorrelation coefficient as a statistical tool to find a linear
had prefered to involve in more BTS’s bugs. From thisrelationship between the committer’'s characteristics thied
wide range of activity, it would not be fair to evaluate them more cautious or less cautious committer in each group. We

Table |
RESULTS OFRQ2

correlation coefficient
Metrics Description G1 G2 G3
Reopen after Reopen after
committed Bad pattern committed Bad pattern
Bad-pattern rate, number of Reopen-after-verified/closadd
BR Invalid/Duplicate-after-new divide by support activéi€eount -0.25 1.00 -0.26 1.00
Reopen-after-committed rate, number of bug that has beepdre
RAC | after-committed divide by number of links found. 1.00 -0.22 1.00 -0.26
MB Median value of each committer’s bug life cycle -0.14 -0.21 -0.45 0.34
SA Number of activities s/he shown in a Bug Tracking System -0.35 -0.12 -0.26 0.13
PJ Period of time s/he has joining the projects -0.34 0.05 -0.32 0.39
CM Number of months s/he show activities as a committer -0.68 -0.02 -0.37 0.34
Time intervals between latest bug status before s/he démidemmit
CDT it to Commit log 0.17 -0.15 0.37 -0.21
Median value of Bug Review Time, Time before he decided|to
MRT | VERIFIED/CLOSED the bug -0.22 -0.10 -0.20 0.17
Average of Bug Review Time, Time before he decided to VERI-
ART FIED/CLOSED the bu g 0.04 -0.24 -0.19 0.06
RSC Number of time s/he RESOLVED the bug 0.08 -0.11 -0.26 0.14
AC Number of time s/he ASSIGNED the bug -0.26 -0.09 -0.23 0.11
FC Number of time s/he FIXED the bug -0.29 -0.13 -0.24 0.11
ROC Number of time s’/he REOPENED the bug -0.39 -0.04 -0.28 0.29
VC Number of time s/he VERIFIED/CLOSED the bug -0.26 -0.16 -0.16 0.04
NC Number of time s/he NEW the bug -0.24 -0.09 -0.14 0.08
MRST | Mean value of bug resolving time -0.05 -0.09 -0.08 -0.11
ARST | Average value of bug resolving time 0.14 -0.39 -0.15 -0.11

suspects many characteristics that might be involved with More experienced committer tends to submit cleaner
each committer’s behavior results such as more cautiougatch.: For G1, committer who active in CVS, as shown in
committer might have a longer review time, or when someTable 1, The CM Metrics, number of committer months, and
committers have more patches committed, they might leadReopen-after-committedte show significant negative linear
to lower Reopen-after-committadte. In this paper, we have relationship with correlation coefficient of -0.68. Fromisth
compared each committer with the total of 16 charactesistic results we could see that, interestingly, when s/he has been
description about each characteristics and results am@rsho promoted to be a committer for longer period of time, her/his
in Table 1. submitted patches are tends to be cleaner. In the other words
the more s/he experienced the more s/he act cautiously.

V. DISCUSSION B. Additional Results

In this section, we discussed with a results from our Additional from the results from our RQ, we shown our
research questions and additional results we can find duringther findings during our research in the following

our research. Committer who mistakenly verified/closed tends to
mistakenly new the bugAfter we answer our research
A. Findings questions, we suspects that if the committer have high

number of Reopen-after-verified/closedugs, they might

Some committer's un-cautious activities can have neghave relatively high number dfvalid/Duplicated-after-new
ative effects to the bug fixing proces&rom our first bugs. In the other words, when committer's negligently
research question’s results, we suspects some activitées t VERIFIED/CLOSEDbug, they are likely to negligently
potentially has a negative consequence and we comparedrntarked the bug status &&EW. So we look further into the
with normal activities. We can identified that the patch thatcommitter who actively support other developers group (G2)
has beerReopen-after-committear the bugs that followed Fig 5 show the box plot between these two patterns. We can
Bad-status-pattes are have longer life cycles compare to determined that high number of falS88&RIFIED/CLOSED
the others bug. From this results, we wish to make a humblyre leads to high number fald¢EW.
suggestion to an OSS’s committer to be aware of their No relationship between CVS mistake and BTS mistake:
importance to the bug fixing process. When they are noFrom our second research question, we suspects that if
cautiously doing their jobs, its might extend the bug life committer not cautious before decided to commit the patch
cycles. in CVS, they might not cautiously change bug status in BTS

patch to be fixed, this is not the target milestones, or need
some minor tweaks later. We want to make suggestion to
another researchers who use bug status pattern in their work
to be aware of these several types of reopen and their
—_— difference impacts.

VI. LIMITATIONS

T . CVS activities data limitationsin our extraction pro-
' cess, we have collect each committer’s patch commitment
7 R activities by observed CVS description that has a link to
N the bug database. Unfortunately, this collected links neimb
are considered to be small portions compared to all of the
activities in CVS. From 30,833 commits in commit log, we
can identified only 1,193 links with a unique bug-id. To
N reduce the bias resulted from a sample size, our goal is
to capture as largest representation of population as we can
As we explained earlier, we (hopefully) archives this goal b
, , , adapting [24] approach in order to overcome this limitagion
X0.10.100 X100.t0.500 X500.and.above Interpreting the bug status patteriiVe acknowledge
that observing the developer’s works solely based on bug
Number of Reopen-after-verified/closed status pattern has some limitations. One status pattern can
has severals meaning or can be interpreted many ways,
Figure 6. Box plot show the relationship between numbeRebpen- such as the .= REOPENED=- ASSIGNED = NEW =
after-verified/closecbugs andnvalid/Duplicated-after-newbugs. RESOLVED(INVALID) patterns. Let A be a developer who
reopens this bug, and B be another developer who changes
its status to resolved and add invalid to it's resolution. We
can interpret this pattern in two ways.
either. Interestingly, From the committer who active intbot First, If A decided that this bug has to be reopened (i.e.,
jobs (G3 from the Table 1), after observed the relationshiRjue to new patch,class,library or other reasons) , assigned
between theiReopen-after-committedhte andBad-status- this bug to B. Later B has found out that it is not valid (
patternrate (Metrics RAC and BR respectively). The resultj e not a bug, false reproduce etc.). In this case, it is'an A
show no significant linear relation between two values withfg|t.
correlation coefficient of -0.26. One explanation is that Forthe second case, if this bug has never been fixed before
because their wide range of activities, committer’s fopr and A suspect that this bug is invalid, so A decided to reopen
are found scattered all over the place, their activitiesntou thjs bug, assigned to B, asked B whether this bug is invalid or
are distributed nonuniformly. More simple explanation isnot. Then, B helps A confirm that this bug is really invalid.
when a committer decided to change bug status in BTSthys A has helped shorten the bug's life cycle.
committer use difference kind of “cautiousness” from the |n order to optimize our result accuracy, we have ran-
patch commitment in CVS. domly select some bugs to observe their status pattern man-
Not all reopen are bad:When we observe the bug ually. We satisfactorily found that most of the patternsduse
status patterns in BTS, contradict to popular belief, wein this research are straight forward, we can easily idgntif
have found that not all reopen has negative effect to the developer who mistakenly verified or new the bug from
project. In Eclipse-Platform, we can identified that theme a the Reopen-after-verified/closeahd thelnvalid/Duplicated-
6 types of reopen. Each type has difference impact to thafter-newpatterns respectively.
bug life cycle. Some patterns show that reopen can have In RQ1, we observe only activities that we suspects its
positive effect such as .= RESOLVED(WONTFIX)= potentially have negative effect to the bug fixing process,
REOPENED=- ASSIGNED = RESOLVED(FIXED). We there might be more activities that leads to the same results
manually observed this patterns, found that some devedopewhich we will include it in our future works. For the
simply change the bug resolution to WONTFIX because theycommitter's characteristics we observe in Table 1. We also
do not have enough knowledge to fix it. Which later has beemoticed that there might be more committer’s activities tha
REOPENED and fixed by other developer. Other example isve did not observed, which can leads to more results either.
the reopened-after-later pattern (=:.RESOLVED(LATER) Please be noted that results from this research is focus
= REOPENED), this reopen are actually intended, LATERonly on Eclipse-Platform development community. This
resolutions usually mean this bug must wait for the newcommunity structure are well-organized and have full-time

500
|

@O0 O

50

Number of Invalid/Duplicated-after-new
5 10
!

workers (like commercial development community). Differ-

ence OSS community can have difference structural which

will reflects difference result from the same approach

VIl. CONCLUSION

[1]

In this paper, we have focus on a developer who plays 2]

major role in bug fixing process call&@ommitter We have

REFERENCES

G. Jeong, S. Kim, and T. Zimmermann, “Improving bug teag
with bug tossing graphs,” iProceedings of the the 7th joint
meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of
software engineering (ESEC/FSE’Q2009, pp. 111-120.

Bugzilla, “Bug tracking system,” http://www.bugzillarg/.

suspects that, when the bugs are taken care by more cautioys] The Bugzilla Team, “The Bugzilla Guide: 5.4. Life Cycle
developer (and verified by cautious committer), their life

cycles might be shorter. We identified committer’s actsti

that have difference consequences to the bug fixing process

: . ; . |£4]
categorize each committer based on their behavior and the
find a related characteristics that separated a good coemmitt
over the bad ones. Our findings can be summarized as

follows

o We are able to determined the patches that have been
reopen after it was committed and showing that, when [5]

the committer commit the patch and that patch had to
be reopened later, its tends to have longer life cycle.
We categorize severals bug status patterns, show that

when the bugs have its status follow&hd-status- 6

pattern they have longer bug life cycle than the bugs
with other patterns.

From wide range of their activities, we can identified
4 types of committer based on their behavior count.

Active in CVS, in BTS, Both active and Low active. 7]

We can identified that, for committer who active in
CVS, more experienced committers tends to commit
cleaner patches, with loweReopen-after-committed

rate.

(8]

In order to observe variation of the results reflected from
the difference community, our future works will apply the
approaches used in this research to another OSS projects,
finding more characteristics that related to each type of

committer, find the potential developer’s characteristizs

of a Bug,” http://www.bugzilla.org/docs/3.4/en/html/gailla-
Guide.html.

S. Fujita, M. Ohira, A. lhara, and K. ichi Matsumoto, “An
analysis of committers toward improving the patch review
process in oss development,” 8upplementary Proceedings
of the 21st IEEE International Symposium on Software Reli-
ability Engineering (ISSRE2010November 2010, pp. 369—
374.

N. Bettenburg, S. Just, A. Schroter, C. Weil3, R. Premraj

and T. Zimmermann, “Quality of bug reports in eclipse,”

in Proceedings of the 2007 OOPSLA workshop on eclipse
technology eXchange (Eclipse’Q2007, pp. 21-25.

] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Pr¢grarad

T. Zimmermann, “What makes a good bug report?"Fro-
ceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering (SIGSOFT'08/FSE-
16), 2008, pp. 308-318.

N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim,
“Extracting structural information from bug reports,” Rro-
ceedings of the 2008 international working conference on
Mining software repositories2008, pp. 27-30.

S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “In-
formation needs in bug reports: improving cooperation be-
tween developers and users,” Proceedings of the 2010
ACM conference on Computer supported cooperative work
(CSCWw'10) 2010, pp. 301-310.

] P. Hooimeijer and W. Weimer, “Modeling bug report quglit

can leads to more cautious committer. We also would like
to observe another developer’s role in the OSS’s bug fixing
process, and hopefully received a useful results that can

benefit all OSS community.

VIIl. ACKNOWLEDGMENT

(10]

The first author is grateful to the internship program

cooperated and supported between Kasetsart Universit
Thailand, and Nara Institute of Science and Technology,

11]

JAPAN. It bestows a grant as well as an opportunity for
undergraduate student to achieve a wealth experience in
abroad graduated school research. This research is being

conducted as a part of the Next Generation IT Progra
and Grant-in-aid for Young Scientists (B), 22700033, 201

ghz]

by the Ministry of Education, Culture, Sports, Science and

Technology, Japan.

in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering (ASE'07)
2007, pp. 34-43.

N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim,
“Duplicate bug reports considered harmful ... really?” in
Proceedings of the 24th IEEE International Conference on
Software Maintenance (ICSM'08R82008-oct.4 2008, pp.
337 -345.

C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, ‘A
discriminative model approach for accurate duplicate bug
report retrieval,” in Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering (ICS'1

- Volume 1 2010, pp. 45-54.

P. Runeson, M. Alexandersson, and O. Nyholm, “Detectib
duplicate defect reports using natural language procgssim
Proceedings of the 29th international conference on Saéwa
Engineering (ICSE’07)2007, pp. 499-510.

[13] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An [24] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

approach to detecting duplicate bug reports using nataral |
guage and execution information,” Froceedings of the 30th
international conference on Software engineering (IC8E'0
2008, pp. 461-470.

(25]

J. Anvik, L. Hiew, and G. Murphy, “Coping with an open bug
repository,” inProceedings of the 2005 OOPSLA workshop on
Eclipse technology eXchange (eclipse’ 08005, pp. 35-39.

——, “Who should fix this bug?” irProceedings of the 28th
international conference on Software engineering (ICSE'0
2006, pp. 361-370.

D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bugoets
using a vocabulary-based expertise model of developars,” i
Proceedings of the 2009 6th IEEE International Working
Conference on Mining Software Repositories (MSR’@0D9,
pp. 131-140.

P. Bhattacharya and |. Neamtiu, “Fine-grained incretak
learning and multi-feature tossing graphs to improve bug
triaging,” in Proceedings of the 2010 IEEE International
Conference on Software Maintenance (ICSM;12010, pp.
1-10.

P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,
“not my bug!” and other reasons for software bug report
reassignments,” ifProceedings of the ACM 2011 conference
on Computer supported cooperative work (CSCW'2D111,

pp. 395-404.

——, “Characterizing and predicting which bugs get
fixed: an empirical study of microsoft windows,”
in Proceedings of the 32nd ACMI/IEEE International
Conference on Software Engineering (ICSE’10) -
Volume 1 2010, pp. 495-504. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806871

E. Shihab, A. lhara, Y. Kamei, W. lbrahim, M. Ohira,
B. Adams, A. Hassan, and K. Matsumoto, “Predicting re-
opened bugs: A case study on the eclipse project,17th
Working Conference on Reverse Engineering (WCRE'10)
2010, pp. 249-258.

C. Jensen and W. Scacchi, “Role migration and advanoeme
processes in ossd projects: A comparative case study,” in
Proceedings of the 29th international conference on Saéwa
Engineering (ICSE’'07) 2007, pp. 364-374. [Online].
Available: http://dx.doi.org/10.1109/ICSE.2007.74

E. Shihab, A. lhara, Y. Kamei, W. M. Ibrahim, M. Ohira,
B. Adams, A. E. Hassan, and K. ichi Matsumoto, “Predicting
re-opened bugs: A case study on the eclipse projectthén
17th Working Conference on Reverse Engineering (WCRE
2010) IEEE. IEEE Computer Society, October 2010, pp.
249-258.

A. Ihara, M. Ohira, and K. ichi Matsumoto, “An analysis
method for improvinga bug modification processin open
source development,” itn 10th international workshop on
principles of software evolution (IWPSE'09)ACM, August
2009, pp. 135 — 143, amsterdam,The Netherland.

(26]

changes induce fixes?” iroceedings of the Second Interna-
tional Workshop on Mining Software Repositoribtay 2005,
pp. 24-28.

A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bern-
stein, “The missing links: Bugs and bug-fix commits,” in
SIGSOFT'10/FSE-18: Proceedings of the 16th ACM SIG-
SOFT Symposium on Foundations of Software Engineering
ACM, 2010.

C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. Devanbu, “Fair and Balanced? Bias in Bug-
Fix Datasets,” irProceedings of the the Seventh joint meeting
of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software
Engineering 2009.

