1478

IEICE TRANS. FUNDAMENTALS, VOL.E95-A, NO.9 SEPTEMBER 2012

| PAPER Special Section on Software Reliability Engineering

An Algorithm for Gradual Patch Acceptance Detection in Open
Source Software Repository Mining

Passakorn PHANNACHITTA ¥, Nonmember, Akinori IHARA ™, Member,
Pijak JIRAPIWONG®, Nonmember, Masao OHIRA ", and Ken-ichi MATSUMOTO®, Members

SUMMARY Nowadays, software development societies have given
more precedence to Open Source Software (OSS). There is much research
aimed at understanding the OSS society to sustain the OSS product. To lead
an OSS project to a successful conclusion, researchers study how develop-
ers change source codes called patches in project repositories. In existing
studies, we found an argument in the conventional patch acceptance detec-
tion procedure. It was so simplified that it omitted important cases from
the analysis, and would lead researchers to wrong conclusions. In this re-
search, we propose an algorithm to overcome the problem. To prove out
our algorithm, we constructed a framework and conducted two case stud-
ies. As a result, we came to a new and interesting understanding of patch
activities.

key words: Open Source Software, OSS repository mining, patch accep-
tance, patch submission, OSS evolution pattern

1. Introduction

Open Source Software (OSS) has become critical through-
out all software development societies. Software devel-
opers even from industries take more interest in OSS, be-
cause it helps them shorten their software development
cycles. More research has been aimed at supporting
OSS, which has elevated the variety of studies. Since
OSS is a community-driven development, comprehensive-
ameliorated studies have become highly popular. There are
supportive activities in OSS that enable everyone to collabo-
rate their work efficiently, even they are geographically sep-
arated. Patch Submission is the key activity for the pur-
pose. Although an OSS project’s archives are manifestly
open to everyone, only committers (i.e. core developers who
can take the full control of a project) can make a permanent
modification to the artifacts. A patch acts like a bridge that
connects a gap between committers and non-committers.
It enables non-committers to suggest ideas for modifying
some parts of an OSS project.

A precise study of patch-related activities was intro-

Manuscript received December 25, 2011.
Manuscript revised April 20, 2012.

"The authors are with the Graduate School of Information Sci-
ence, Nara Institute of Science and Technology, Ikoma-shi, 630-
0192 Japan.

""The author is with the Faculty of Computer Engineering,
Kasetsart University, Bangkok, Thailand.

a) E-mail: phannachitta-p @is.naist.jp

b) E-mail: akinori-i@is.naist.jp

¢) E-mail: b5005135@ku.ac.th

d) E-mail: masao@is.naist.jp

e) E-mail: matumoto@is.naist.jp

DOI: 10.1587/transfun.E95.A.1478

duced by Bird et al. [1]. They are the pioneers who proposed
a method to collect and extract patches for further analy-
sis. Later, there have been many studies following the Bird
et al. method that analyzed OSS patch-related information
to achieve a better understanding of OSS projects [2]-[5].
Weillgerber et al. [6] have concluded that small size patches
are more valuable and suggested the peer developers to sub-
mit small size patches for more possibilities of acceptance.
However, it has been found that their analyzing procedure
was not powerful enough to coverage sufficient cases. They
count a patch as accepted if the whole of its record was com-
mitted into a revision at once. This led them to their mis-
taken conclusion that smaller size patches are preferable.

This study is motivated by the studies of Bird et al. [1]
and Weiligerber et al. [6]. We have found that their analyt-
ical grain may be too coarse to conclude the characteristic
of acceptable patches (i.e. the preferred size of patches for
acceptance). The question is what will happen if patch ac-
tivities analysis is performed in finer grain? In this study,
we devise a novel algorithm that divides patches into small-
est meaningful grain, which is a line of source code (LOC).
It led us to discover new dimensions of patch analysis. In
our evaluation, we certify the preferable size of accepted
patches. Our devised algorithm enables us to include the
case in which only a portion of the source code was accepted
gradually, which is more likely to be occurrence in practice.
With further evaluation we try to explore a totally new find-
ing that can be brought out only from our propose. We seek
out an inconclusive conjecture that fine-grained patch ac-
ceptance analysis has a potential to elucidate it. We turn out
that temporal-based patch submission analysis could explain
OSS project evolution and can conclude an inconclusive be-
lief from Nakakoji et al. proposed OSS evolution pattern
[7].

The remainder of the paper is organized as follows:
Sect. 2 outlines background related to the analysis of patches
submitting activities. Section 3 explains our proposed algo-
rithm and its method of implementation. Section 4 demon-
strates our case studies and elaborates the results. Section 5
discusses on our findings and validates our proposal, and
Sect. 6 concludes the paper.

Copyright © 2012 The Institute of Electronics, Information and Communication Engineers

PHANNACHITTA et al.: AN ALGORITHM FOR GRADUAL PATCH ACCEPTANCE DETECTION IN OPEN SOURCE SOFTWARE REPOSITORY MINING

2. Background
2.1 Project Repository

A software repository is a system that enables a truly
community-led development. According to the principle of
OSS, every artifact inside the system should be manifestly
open to the public. The project repository holds every arti-
fact from the beginning of the project imprinted with each
file’s revision. This imprinted revision allows everyone to
start a development from any snapshot in any prior revision.
Furthermore, the difference between any two previous revi-
sions enables everyone to track an improvement of a project
component from any artifact.

Recently, software repository management tools have
been improved notably. To date, there are many well-known
software repository management tools such as CVS (Con-
current Versions System), SVN (Subversion), and git. They
also provide many useful features. Their usability becomes
highly effective and efficient, encouraging developers to
work on an OSS project with ease. Likewise, those such pro-
vided features also give researchers an opportunity to study
and analyze the project artifact thoroughly for a better com-
prehension on the OSS projects and societies.

2.2 OSS Patch

Patches are an important in filling gaps in OSS development
societies. Without patches, it would be too complicated for
anyone to understand the requirements or ideas of others.
Patches have become a universal standard protocol for all
the communications about of changes.

When a non-committer needs to suggest a code-base
idea, they just modify the source codes. They then create
their patch from their changed source code, and submit it
to the project committers. A patch is usually sent through
conventional channels such as a bug tracking system (i.e.
Bugzilla) and a mailing list. The submitted patch will be
discussed on those channels, allowing all to brainstorm on
that submitted patch together. If the discussion reaches a
consensus, the patch will be applied to the repository and
the modified original file will be released with an upcom-
ing version. Whether a whole patch or just a portion of it
has been submitted, we refer to this as patch acceptance.
For easier understanding of our proposed fine-grained algo-
rithm, we first explain patch creation.

2.2.1 Patch Creation

OSS Patches contain different LOC in the original version
and the developer’s, so we sometimes call the un-submitted
patches diff files. The different LOC is indicated in patches
line by line, showing what is added, deleted, or changed.
To date, there are 3 distinctive formats of diff files imple-
mentation. They are Standard diff, Unified diff and Context

1479

1 | def greet(name) 1 | def greet(name):
2 print ‘hello’, name 2 print ‘hello’, name
3 | greet(‘Alice’) 3 | def getname():
4 | greet(‘Bob’) 4 return raw-input()

5 | greet(getname())

//repos/m/hi.py (revision 1.4) //local/m/hi.py (modified in local)

Last Modified: Sep, 122011 11:11:01 | Last Modified: Sep 15, 2011 23:56:08

Fig.1 An example comparing changed source code and its original file.

diff formats. Each type of format comes from the develop-
ment of repository management tools. Although Standard
diff is the simplest and can be utilized in practice, it consists
of too little information for any further proposal [6]. More-
over it is impossible for a researcher to perform any kind
of study and analysis using Standard diff information, if it
was sent as a patch. Fortunately, that lack of information
has brought widespread OSS development. Few Standard
diff have been found in the bug tracking systems recently,
so that researchers can omit them from their study [6].
Figure 1 shows an example of a modified python file.
The left side is the original file, /m/hi.py, that was down-
loaded from the software repository, and the right side is
modified by a developer. There are 2 LOC deleted and 3
added. Figure 2 shows three types of diff files that are cre-
ated from both files seen in Fig. 1. As shown in Fig. 2, Stan-
dard diff at least has not provided the modified timestamp,
which is necessary for any study of patch-related activities.

2.2.2 Patch Acceptance

If any portion of a patch has been committed to the project
repository, it means the committers have accepted a sugges-
tion from outside. In fact, committers can decide to accept
only some portions, and they can also gradually commit a
patch in several revisions. This always happens when a sub-
mitted patch is large, when it is likely to consist of many
components. For example, if a patch contains 100 LOC with
10 methods and is committed 10 LOC each in 5 revision, it
is 50% accepted by the committers. However, there is no
such algorithm in all of the existing studies that can include
a gradual patch acceptance case in an analysis.

3. Algorithm for Gradual Patch Acceptance Identifica-
tion

This section elaborates our algorithm on how to include
gradual patch acceptance for further patch-related study. We
also explain thoroughly a framework construction derived
from this algorithm. First of all, Fig.3 gives an overview
detail of our proposed algorithm in scenario.

Suppose that a non-committer ‘A’ checked out foo.py
from the project repository. Now the latest committed
foo.py is imprinted with a revision num 42. ‘A’ then re-
moves a LOC contained “bbb”, and adds two LOC contain-
ing “yyy”, and “zzz”. After ‘A’ creates a diff file, foo.diff,
from his foo.py and the original foo.py, his foo.diff consists
of 3 records of changed LOC. He needs his change to be

1480

IEICE TRANS. FUNDAMENTALS, VOL.E95-A, NO.9 SEPTEMBER 2012

Format Standard Diff

Unified Diff

Context Diff

Command (CVS) |cvs diff -r 1.4 /m/hi.py |cvs diff -u -r 1.4 /m/hi.py | cvs diff -c -r 1.4 /m/hi.py

Index: hi.py
Header (CVS) RCS file: /m/hi.py,v
retrieving revision 1.4
retrieving revision
Modified time - --hi.py 12 Sep 2011 11:11:00 -0000 1.4

+++ hi.py 15 Sep 2011 23:56:08 -0000

3,4¢3,5

< greet(‘Alice’)
< greet(‘Bob’)
> def getname():

Modified contents

@@ -14+15@@
def greet(name):
print *hello’, name
— -greet(‘Alice’)
-greet(‘Bob’)
return raw_input() | +def getname():
> greet(getname()) + return raw_input()

+greet(getname())

st st sfe st sfesfesfeskeskeoskosk ki ok

sk 1’4 skeskoskosk

def greet(name):

print "hello’, name
! greet(’ Alice’)
! greet("Bob’)
15—
def greet(name):

print "hello’, name
! def getname():
! return raw_input()

| greet(getname())

Fig.2 Information obtained from each kind of the diff files.

"\ foo_A.diff —\ foo_B.diff
2011/11/14 13:00 \ 2011/11/17 8:00
From: A -\ From:B
~ - bbb ~~ & abe
+ yyy + def
+ 2zZ
Diff data Diff data
+ 123 + 277
+ aaa - 123
+ cCC - bbb
+ yyy +def
(- > < \
N N = é}
foo.py foo.py foo.py
revision: 42 revision: 46 revision: 51
2011/11/10 9:00 2011/11/16 14:00 2011/11/21 22:00

Fig.3 Overview scenario.

applied by everyone who will use this source code in the
future, so he submits foo_A.diff as a patch into the project
bug tracking system. Suppose that he submits foo_A.diff on
Nov 14, 2011at 1:00 pm. Later, a LOC in the foo_A.diff
patch has been committed in revision 46, and another two
LOC are committed in revision 51. At a snapshot on revi-
sion 46, this foo_A.diff has been accepted 33%, however;
5 days later it has been fully accepted in revision 51. An-
other non-committer ‘B’ also checked out foo.py and made
2 changed LOC by adding “abc” and “def” in foo.py. He
also made his foo_B.diff and submitted it through the project

bug tracking system on Nov 17, 2011 8:00 am. At the cur-
rent revision (revision 51) only “def” and been committed,
so that this foo_b.diff is concluded as 50% accepted.

How can an algorithm detect the above scenario? Sup-
pose that we investigate every different LOC between each
contiguous pair of revision snapshots after the submitted
timestamp of patches, the committed records will be turned
out. Thereafter, if we compared each committed record with
the submitted patch and count the identical, both portion
acceptance and gradual acceptance can be detected and in-
cluded into any kind of further analysis.

To implement and evaluate our proposed algorithm, we
construct a viable framework. The framework is divided
into 3 phases. The first two phases are data extraction.
We name them Patch extraction and Repository’s diff-file
creation. The last phase is our proposed algorithm perfor-
mance, which we name Gradual patch acceptance identifi-
cation.

3.1 Patch Extraction

To cover both conventional patch submission channels,
Bugzilla and mailing list, patches from both sources need
to be gathered correctly. The two types of sources con-
tained patches in totally different structures. So we need
two particular patch extraction methods. There are several
existing studies of patch extraction from a mailing list [8]—
[10]. We choose to improvise and extend the patch extrac-
tion phase proposed in Weil3gerber et al. [6]. Their method
is straightforward and achieved sufficiently high precision.
Patch gathering and extraction in Bugzilla, on the other
hand, has no obvious proposal. Moreover, the patch attach-
ment locations in Bugzilla are highly diversified, so that a

PHANNACHITTA et al.: AN ALGORITHM FOR GRADUAL PATCH ACCEPTANCE DETECTION IN OPEN SOURCE SOFTWARE REPOSITORY MINING

sophisticated method is needed for this purpose. We devel-
oped a focused website crawler augmented with heuristic
rules to cover all possible attachment locations.

3.1.1 Patch Extraction from Mailing List

In a mailing list, patches are always mixed with normal text
in the mail body. We can set them apart by following the
Weillgerber et al. proposal [6]. The goal of this phase is to
transform raw patch data into a good format for a further
analysis. As ing existing studies, we exclude all the Stan-
dard diff format that has insufficient information. We break
Context diff and Unified diff into readable LOC grain, and
collect all necessary information that related to a LOC and
all the patches.

Let a tuple ({p, P,, 1, Ly, [cp]) denote patch;, where I,
is patch’s index, P, is patch’s absolute path, f, is patch’s
submitting time, L, is the total number of the changed LOC,
and [cp] is a list containing all the individual changed LOC
in patch;. In more detail: I, is a short label that describes a
patch. P, is what we can identify as a corresponding orig-
inal file in the repository. The timestamp of each patch can
be indicated with 7,. There is a common issue in temporal-
related analysis when analyzing data sources come from dif-
ferent time zones. Timestamp needs to be converted into a
common timezone such as UTC. Otherwise an analysis will
be inaccurate. In this work we have found many types of
time zones such as UTC, EST and EDT, and we then parsed
and converted all of them into UTC. Next, we can use L, to
label and categorize the size of patches. Finally, each mem-
berin [c,] is our further analysis grain, which is the smallest
meaningful grain of patch-related activity analysis.

3.1.2 Patch Extraction from Bug Tracking System

Bug tracking system is mostly implemented in web appli-
cations such as the well-known Bugzilla. A web crawler
is needed to gather patches from it, and, moreover, a web
parser is required for the content extraction. Since all the
file types are allowed to submit into the bug tracking system
as patches, it is better to develop a focused web site crawler
[11] for this purpose. We augment a heuristic to our focused
bug tracking system crawler that works as follows. In each
crawled bug report, firstly, the crawler parses all html tags
off using an Html-parsing tool named Jericho HTML parser,
which is a magnificent HTML parser implemented in Java
[12]. Next the crawler rolls out the attachment section in
that page, and all the text-base and archived files are col-
lected. We recursively extract each archive file to collect all
the text-base files in it. After we collect all the attached text-
base files of a bug, we roughly filter out the non-patch file
by looking up each file thoroughly for a patch indicator key-
word. Keywords are “Index:”, “RCS file:”, and “diff”. After
we filter out the possibly non-patch file once, we perform a
finer filtering by looking for an indication of the original
file’s absolute path corresponding to that patch. If the abso-
lute path is found and the original file in repository can be

1481
##Rev.No. Committed time-stamp
51 2011-11-21 22:00:59
46 2011-11-16 14:00:34
42 2011-11-10 09:00:12
19 2011-10-14 21:00:01

Fig.4 Committed revision number and time-stamp pair example.

located by that path, we conclude that the attached file is a
submitted patch. After this step, the patch extraction from
a text-base file can be adapted from the mailing list patch
extraction method. After all patches are extracted, we com-
pose them into records and store them into a database.

3.2 Repository’s Diff-File Creation

These diff-files are created manually, with each contigu-
ous pair of revision snapshots of every file contained in the
project repository. At the beginning, all the OSS project
source code files are checked out from the repository. Next,
we create a list of tuples consisting of committed revision
number and committed time-stamp pair, as in the example
in Fig. 4. We then create diff files between each contiguous
pair of revision records.

Created diff file is also treated as a tuple similar to an
extracted patches. A tuple (I, P,, t,, [c,]) denotes a Diff
file record. I, is a created diff file’s index, P, is a source
code’s absolute path, ¢, is its timestamp. We also parse the
timezone into a common UTC. [c,] is the list of changed
LOC between a pair of a revision. We also compose (I, P,,
t,, [c,]) into records and store them in a database.

3.3 Gradual Patch Acceptance Identification

To note if a patch is gradually accepted, we need to find out
if a LOC record in [c,] can be found in [c,] any time after
t,. First of all, we need to specify which original file in the
project repository is patch; is submitted for. In fact, the in-
dex field in both patches and diff files are designed for this
purpose, so we only need a comparison between I, = I, to
solve the specifying problem. However, the index field has
often been omitted by the patch submitters, which requires
us to match between the absolute path (P, and P,) instead.
Unfortunately, the absolute paths from both sources are dif-
ferent, because patches are made in different environments.
The best we can do is to perform the longest string matching
between P, and P,. In the case that matching result turns out
more than one candidates, we omit that LOC because of an
ambiguity.

To make the matching more reasonable, we define a
time scope variable named At, In fact, there must be a num-
ber of submitted patches per day (the screening process can
take some time), so as to minimize the time required for
a patch to become accepted. We define Ar from our as-
sumption that the screening process has not longer than Ar
days, which makes our proposed algorithm more capable
from noises. (That is, there may be a duplicate LOC that

1482

is committed a couple years after patch; has been submit-
ted. In this case we could misjudge it as a record of patch;’s
acceptance.)

We conclude that a patch; is an accepted patch if there
is an existing LOC that has been committed to the repository
within a defined At scope.

(Ip = Ir \ Pp ~match Pr)
ANty +ALLE, (D)
A Gl lEle) < o]

Note that each LOC in both [c,] and [c,] has been
whitespace-collapsed. We have a strong presumption that
in gradual patch acceptance, committers often apply patches
manually. They can produce some whitespace shifts that can
produce an accuracy loss in the identification process.

4. Case Studies

We have conducted two case studies to show potential uti-
lization of our proposed algorithm. The first was to study
patch acceptance characteristics when including the gradual
patch acceptance case. The second case study analyzes the
temporal-based patch commitment in its gradual patch ac-
ceptance aspect.

4.1 OSS Project Data Sources

Both case studies are conducted on two well-known OSS
projects, the Apache HTTP Server and the Eclipse Plat-
form. Apache HTTP Server is an instance of data source
for a project that utilizes SVN as source control and mail-
ing list as patch’s communication channel. On the other
hand, Eclipse Platform, is an instance for CVS repository
and Bugzilla. After the data extraction in the first and second
phases has been finished, there are two databases containing
records as shown in Table 1. The Eclipse Platform dataset
is approximately eight times larger than the Apache HTTP
Server dataset, so we denote Eclipse Platform dataset as a
large dataset and Apache HTTP Server as a small dataset.

4.2 Patch Acceptance Analysis

We chose an acceptance rate for each patch; as our measure-

Table1 Transformed data from both projects.
(a) Repositories
| Apache HTTP Server Eclipse Platform
Repository SVN CVS
Observing period 1998/01 - 2003/12 2002/1 - 2007/12
#File 6,685 47,968
#Changed line 2,223,487 11,012,316
(b) Patches Data Source
| Apache HTTP Server Eclipse Platform
Source Mailing list Bugzilla
Observing period 1998/01 - 2003/12 2002/1 - 2007/12
#Patch 6,370 89,513
#Indicated Original file 2,240 84,949
#Changed line 171,354 13,086,116

IEICE TRANS. FUNDAMENTALS, VOL.E95-A, NO.9 SEPTEMBER 2012

ment. Acceptance rate can be calculated from the extension
of gradual acceptance identification, by calculating the ratio
between the summarization of each LOC which is held by
Eq. (1) in a patch and its L, as illustrated in Eq. (2).

Xlldele) = lele))
LP

AcceptRate(patch;) = 2)

To make an observation more obvious, patches should
be categorized into several classes by size. We decided on
5 classes of patches that rather grow in exponential. Their
ranges are as follows, 1-4 LOC, 5-19 LOC, 20-49 LOC,
50-199 LOC, and 200 LOC and higher. We denote (0,5)
LOC as small patches to be the same as in the existing
study [6]. Also, we define the level of patch acceptance in
classes of percentage. We categorized percentage into two
main classes: partial and fully acceptance. Partial accep-
tance is divided into quartiles that are the four ranges of ac-
ceptance:(0%, 25%), [25%, 50%), [50%, 75%), and [75%,
100%), and full acceptance is only 100% acceptance. For
example in the class of 20-49 LOC, the [50%, 75%) quartile
indicates that patches are accepted between 10 and 36 LOC.
Note that, all of the ranges include the gradually accepted
cases.

4.2.1 Experimental Results

We set up a variation of Ar as 30 and 365 days; hence both
time scopes are meaningful (i.e. a month, and a year). We
start an experiment on our small dataset setting up with both
At. The results from the gradual patch acceptance identifi-
cation are shown in Fig. 5. In Fig. 5(a), the x-axis indicates
5 classes of a patch’s length classified by L, (i.e. The left-
most stacked bar signifies the small patches acceptance.).
The y-axis indicates the total number of accepted patches.
For each stacked bar, there are 5 classes of patches accep-
tance percentages. The bottom area indicates a low value
of acceptance (i.e. under 25% accepted). The top area indi-
cates the full acceptance. The obvious results pointed out
in this experiment is the both set up Ar as 30 days and
365 days yields the same result in patch acceptance point
of view. For instance, our proposed algorithm can show an
improvement to achieve more insights of patch acceptance
observation. The insights are (I) the numbers of full accep-
tances are decreased by the incremental of size of patches.
Also (II) the full-acceptance class as shown in the top area
seems to be less than the others. In this experiment, there are
more accepted patches among the small patches class when
compared to the larger patches in the Apache HTTP Server
project.

To be more concrete, the stacked histograms of per-
centage plotting are more distinguishable. The percentage
plotting of the Apache HTTP Server experimental result is
illustrated in Fig.5(b). In this figure, the x-axis indicates
5 classes of the patchs length classified by L, the same as
in Fig. 5(a). The y-axis indicates the acceptance percentage
for each class of patches from 0% to 100%. Figure 5(b) as-
sures the minority of full-acceptance class. Some concrete

PHANNACHITTA et al.: AN ALGORITHM FOR GRADUAL PATCH ACCEPTANCE DETECTION IN OPEN SOURCE SOFTWARE REPOSITORY MINING

#Accepted Patches

(a) Counting the number of accepted patch from Apache HTTP Server dataset

Apache HTTP Server (A t = 30 days)

Apache HTTP Server (A t = 365 days)

Apache HTTP Server (A t = 30 days)

1483

Apache HTTP Server (A t = 365 days)

(0%25“}# —

1000 - [25%,50%) =]
[50%,75%) B 3
[75%,100%) [[75%,100%) [
800 |- [100%] =1 [100%] =3

g
g
8

IS
&
8

200

=

(05 [520) [2050) [50,200)
Patch's Length

[200,nf)

Eclipse Platform (A t = 30 days)

—

#Acceptance Percentage
3
T

(U%ZQS%D Ijl [50%‘7‘5%) m‘ [mnv‘/\,] =3
[25%,50%) X7 [75%,100%) [

100

(U%“ZS%) Ijl [50%‘7‘5%) m‘ n 00"‘/e] =3

[25%,50%) 57 [75%,100%)

05 [520) [2050) [50,200)
Patch's Length

[200,inf)

Fig.5

Eclipse Platform (A t = 365 days)

(05 [520) [20,50) [50,200)
Patch's Length

[200,nf)

(05 [520) [2050) [50,200)
Patch's Length

[200,inf)

(b) Acceptance percentage from Apache HTTP Server dataset

Experimental results from Apache HTTP Server dataset.

Eclipse Platform (A t = 30 days)

Eclipse Platform (A t = 365 days)

(0%.25%) 1 [50%.75%) B [76%,100%) (0%.25%) 1 [50%.75%) [[75%,100%) (0v625%) 7 [50%75%) B [100%] 7 (0%25%) 1 [(50%75%) B [100%]
[25%,50%) 537 [75%,100%) [N [25%,50%) X237 [75%,100%) [25%,50%) [5 [75%,100%) [25%,50%) [[75%,100%) [N
7500 100 -
o
g
B 6000 - - £ 8o =
5 8
< = $
g 0o F g 6o L
g 5
8 [2
£ 3000 |- H S a0l L
= 3
s
% *
1500 |- = 20 - =
—
05 [520) [2050) [50,200) [200,inf) (05 [520) [2050) [50200) [200,nf) 05 [520) [2050) [50,200) [200,inf) 05 [520) [2050) [50,200) [200,inf)
Patch's Length Patch's Length Patch's Length Patch's Length

(a) Counting the number of accepted patch from Eclipse Platform dataset

Fig. 6

observable points in Fig. 5(b) and that few of the patches
are accepted most of their LOC (i.e. If small patches are ex-
cluded as a outliner, less than 30% of accepted patches are
accepted over 75% of their LOC.)

We performed another experiment on the large dataset,
Eclipse Platform, since the characteristics of the two
projects are very different. For example, the total submitted
and committed LOC during 5 years of observation is very
distinctive, as is shown in Table 1. Figure 6 shows the result
of counting the number of accepted patches. The trend of ac-
cepted LOC in the Eclipse Platform and the Apache HTTP
Server is different as seen in Figs.5(a) and 6(a). Larger
patches are accepted more in Eclipse Platform projects.
However, it is very interesting that in the percentage plot-
ting shown in Fig. 6(b), trends in both projects are identical,
as is shown in Figs. 5(b) and 6(b). The full-acceptance class
is also a minority among others, as they are in the Apache
HTTP Server.

4.3 A Study of Temporal-Based Patch Commitment Anal-
ysis

In this case study, we study the change of patch commitment
rate over time. First, we collect the accepted patch com-
mitment record, and we count the total number of patches
which are committed in each month. The counting-in con-

(b) Acceptance percentage from Eclipse Platform dataset

Experimental results from Eclipse Platform dataset.

dition is shown in Eq. (3). In this study, the Az variable from
Eq. (1) is set as 365 days.

#CommittedPatch(month;) = Y, Patch; | (Al |
lelc,) > Lee]
A month(t,) = month;)

3)

Figure 7 shows preliminary results from the Apache HTTP
Server and the Eclipse Platform dataset. Preliminary re-
sults from both datasets are shown in Fig.7. Note that,
the highlighted bar and the corresponding labels above it
will be used for further discussion. A notable diversity of
patch commitment level in each month is very interesting.
The committers must have been influenced by some fac-
tors to vary their openness level [13]. (Openness refers to
how much committers accept, share and comply with non-
committers.) In some months, committers are suddenly
more open, which makes us focus on the temporal factor.
From the characteristics of Fig.7, we suggest that special
event occurrence and the changing trend have a possibility
to be the factors.

4.3.1 Analytical Result

In Fig. 7, we can notice two types of alternation. The first

IEICE TRANS. FUNDAMENTALS, VOL.E95-A, NO.9 SEPTEMBER 2012

1488

1208
1888

888
608

400
288

1484
Apache HTTP Server
i
g - z z
= o o o =
G 268 & 2 z g
2 5 g & K
) ‘T s T < v o
L 248 z & # = 48
£ % 5 =]
£ o0 g 3 & 5 oo
=] E N a2
< E: 2 $ 3 L g
£ 160 = Z 2 & oo B b
Q o L3 = H 2 =
o S = o =] = b
80 T =] S b4
* E N 1 2 &1
2 = g
48 & I 2
°g & & = T 5 5 E 2 & 5
ey S~ . . ey ey ~ . . ey .
w0 w [=r] o = = - =] o L] ir]
[=] [=r] [=r] o = = = =] = -] =
=] =] =] o = = = = = = =
- - - - o o o o o o o
Timeline
(a) Analyzing patch acceptance from Apache HTTP Server project from January 1998 until December 2003
Eclipse Platform
=
- 5
8 c
£ 7 .
3 " :] 5
e = @ ha} b4
o 1408 B <] [£
= o< 2 2 2
£ 1200 25 g e o
=] 5w = = =
SEET % T e g) T &
- E - =z
4 son z g B FE s 3
2 =3 S i T o =
& ooo o = 5B o S ";)
408 2 > - L= 2 = @
1 L
= s o - 4 < i l
208 o o]
oo

2002701
2002/84
2002/087

2002710
2003701
2003/07
2003/10

Timeline

(b) Analyzing patch acceptance from Eclipse Platform project from January 2002 until December 2007

Fig.7 The accepted patch commitment in Apache HTTP Server and Eclipse Platform project.

one is pulses (i.e. Apache HTTP Server in October 1998 and
August 1999 in Fig. 7(a)). And the second one is the number
of commitment changes after a pulse.

Since pulses are a transitory alternation of openness
level that seems to have a high impact. It makes us think of a
special event. We started an investigation on both projects.
We found the record of conferences held and versions re-
leased. They can be matched with the two types of pulses
in Fig. 7. The investigation on pulses, which do not have a
long effect on changing the openness level (i.e. the number
of committed patches), turned out many records of confer-
ences. Matching the record into Fig. 7, conference makes
the committers openness level increased in a month or the
next month, and then the openness level returns into the
same level as before the conference. For example, Apache
HTTP Server in October 1998 and August 1999 in Fig. 7(a)
are pulses, which keep the openness level in the months be-
fore and after at the same level. It is very reasonable that
the OSS community of a project must have placed some ad-
vertisements for the forthcoming conference (i.e. calling for
papers). It would arouse the newcomers as well as incite the
activeness of the currently inactive developers to participate
with the OSS community.

On the other hand, a pulse in the month in which a re-
leased version was held (i.e. Eclipse Platform in June 2004
and March 2005 in Fig.7(b)) changed the openness level
afterward, and also has a long-lasting effect. In Fig.7, we

highlight a bar of the months in which an OSS community
held special events and label the event name above. There is
a difference in the increasing and the decreasing number of
patches commitments. When a project has released a stable
version, it must have been stable enough for fewer issues to
be still opened. So, the committed level should be continu-
ally decreased afterward. In contrast, a released of an unsta-
ble version (i.e. alpha or beta version) should still have a lot
of remaining issues that need much discussion and refine-
ment. So, the openness level after a release of an unstable
version is continually increased.

Note that we have excluded all the records of Apache
HTTP Server 1.0 released versions from our investigation,
because a new version was released almost every month the
first couple of years.

We have figured out that the changing of openness level
can explain an OSS project’s state of development, so we try
to combine it with another temporal factor: trend. We found
one study of OSS evolution very interesting [14]-[16], since
it is not only a temporal-based study, but is also related to
our question. From the bibliographical surveys, an OSS evo-
lution pattern proposed by Nakakoji et al. [7] is the most
fascinating and suitable for deriving from our possessed in-
formation. Nakakoji et al. classified OSS projects into 3
types and suggested a transition between each type. The
three types of OSS projects are Exploration Oriented, Util-
ity Oriented, and Service Oriented. Table 2 shows a sum-

PHANNACHITTA et al.: AN ALGORITHM FOR GRADUAL PATCH ACCEPTANCE DETECTION IN OPEN SOURCE SOFTWARE REPOSITORY MINING

Table 2
| Exploration Oriented |

1485

Three types of OSS project.

Utility Oriented Service Oriented

Objective
Control style
Community structure
Major problems

Exploration Exploration
Oriented ,new Oriented 'new
\ |dea? \ |dea7
Service Service
mature Oriented mature Oriented
’ nem ’ ne\h

Utility needs Utility needs
Oriented Oriented

Rapid Slow Rapid Slow
Evolution Evolution Evolution Evolution

Fig.8 Nakakoji et al. proposed OSS Project’s Evolution pattern [7].

Sharing Innovations and Knowledge
Cathedral-like central control
Project leader and core members
Finding a novel innovation

mary of their properties. They also believed that the evo-
lution between each type will be alternated as shown with
the transition in Fig. 8, and their belief still needs supportive
evidence.

There are three existing trends in the commitment
record in Fig.8. They are increased, decreased, and un-
changed openness levels. We map between the trends with
an evolution pattern using the properties in Table 2. Bazaar-
like decentralized control is the only type that can make a
notable increase in the number of committed records [17].
We presume the project must be a Utility-Oriented dur-
ing that period. We can also conclude that the special
event pulses period is transitory Utility-Oriented, because
the number of committed records also increased signifi-
cantly. Next, the decrease in committed records usually oc-
curred after a major release. We presume that the project
is going to become stable, so that there are fewer remain-
ing defected that needed a fix. Consequently, the objective
of the Service-Oriented as shown in Table 2 makes it be a
perfect conclusion for this case.

From this observation, there are three cases that can
elaborate the unchanged openness level. The first case is
when a project has just been founded or is well-known. Be-
cause the project is not very active, this case can be sim-
ply considered as an Exploration-Oriented. The second
case is an unchanged openness level which is found after a
Utility-Oriented period. We presume that most of the sat-
isfied requirements have already been fulfilled that make
the project more mature and less active. We conclude this
case is a transition between Ultility-Oriented and Service-
Oriented.(Indicated as mature in Fig.8) The last case is
when it occurred after a Service-Oriented period. After a
project has been mature for a little while, a new need of ex-
pansion would become a topic of development. It can be
in a transition state becoming an Exploration-Oriented or a
Utility-Oriented. It will be a transition to an Exploration-
Oriented if new ideas are the most critical. On the other
hand, if there is an urgent need for many new features,
it would probably be in transition to becoming a Utility-

Satisfying an individual need
Bazaar-like decentralized control
Core members and many peripheral developers
Difficult to choose the right program

Providing stable service
Council-like central control
Core members and Many passive users
Less innovation

Oriented.
5. Discussion
5.1 Gradual Patch Acceptance Identification Algorithm

In fact, the existing development of all patch acceptance de-
tection methods are in reversed engineering. The more cri-
teria in practical were included, the more we can compre-
hend with the activity and the OSS society as well. Our
proposed algorithm is devised from a better hypothesis that
give a better reflection to actual. Our two different exten-
sions based on the algorithm have already shown that after
the overlooked criterion was included into the identification,
many consequence are turned out difference. Moreover, an
unexplored area of study can also be discovered.

There are still more criteria that need to be studied, for
example the variable name substitution. The methods in the
existing studies have already tried to indicate a substitution
of the variable name [1], however non of them are good
enough for the practically use. Because the provided log
itself does not contain any helpful information to find them
out. All the approaches are using too simple heuristic that
also unable to evaluate it clearly. Moreover, it is impossi-
ble to know that a patch was accepted if committers refine
the whole submitted patch before they commit it. For that
case, our devised algorithm at least can detect the untouched
LOC that can give out an acceptance record instead of rejec-
tion. However, we believe that such case is rather to be omit
than the gradual patch acceptance case, which is likely to be
happened more frequently.

5.2 A Discussion on Patch Acceptance Analysis

The following are discussing what we have discovered along
with the patch acceptance analysis that extended from our
devised algorithm.

5.2.1 Larger Patches Can Be Concluded as More Accepted
if Rejected Rate is Considered

Rejected rate is also an interesting feature in patch accep-
tance analysis. It has never been discussed in any existing
work. Since the conducted experiments discussed only ac-
ceptance rate are still unsatisfactory to tangibly conclude if
larger patches are more preferable than smaller patches, we
perform one more experiment included rejected rate. In this
experiment, we categorized patch acceptance into 3 classes.
They are fully accepted (i.e. 100% of LOC accepted), par-
tial accepted, and rejected. We perform this additional ex-
periment using only 365 days of Ar. Figure 9 shows the

1486

Apache HTTP Server (A t = 365 days) Eclipse Platform (A t = 365 days)

IEICE TRANS. FUNDAMENTALS, VOL.E95-A, NO.9 SEPTEMBER 2012

Apache HTTP Server (A t = 365 days) Eclipse Platform (A t = 365 days)

T T T T T
3000 |- Rejected (]
Partially Accepted =]

Fully Accepted EZZZ]

T T T T T
Rejected [Fully Accepted EXZX]

Partially Accepted [

2500 |-

2000 |- L

1500 |- L

#Submitted Patches

1000 |- L

500 - =

S

T T

T T T T
Rejected [Fully Accepted [XXX]

Partially Accepted 0

T T T T
Rejected] Fully Accepted EXXEI

Partially Accepted
100 | ly pted £ L

#Acceptance Percentage

05 [5.20)
Patch's Length

[20,50) [50,200) [200,inf) 05 [520) [2050) [50,200) [200,inf)
Patch's Length

(a) Counting the number of submitted patches

Fig.9

result. In Fig. 9(a), the x-axis is indicates 5 classes of patchs
length classified by L, as in Fig. 5(a). The y-axis indicates
the total number of submitted patches. The top area in each
bar indicates the fully accepted class. The middle area in-
dicates the partial accepted class, and the bottom area indi-
cates the rejected class. From this figure, we can find the
difference of the major size of the submitted patches from
both projects. Apache HTTP Server project developers tend
to submit small patches over large patches. However, in both
projects, larger patches seem to be more accepted.

To conclude if large patches are more preferable, per-
centage plotting is more suitable. Figure 9(b) shows that
there are two interesting common characteristics in both
projects. First, the number of rejected patches is far more
than accepted patches. Second, when we focus on accepted
patches area in Fig.9(b), larger patches can be concluded
as more accepted, which is a different conclusion from the
existing study proposed by Weillgerber et al. [6].

In conclusion, our algorithm is flexible enough to com-
pare our hypothesis on gradual acceptance with the existing
fully acceptance case [1], [6]. In Figs. 5(b), 6(b) and 9(b), if
we focus only the top area in each bar, which indicates only
the fully acceptance case, we can observe that the accep-
tance trends from both projects are identical that the fully
acceptance rate is decreased by the size of submitted patch.
This can certify the correctness of the existing study [1],
[6], which the authors have a right conclusion derived from
the existing patch acceptance detection method. However
the different outcome is turned out, when we include those
aforementioned overlook cases. It leads us to conclude that
the patch acceptance rate increases by the size of submitted
patches in actual.

5.2.2 The Varied Time-Scope (At) Certifies the Existence
of Gradual Patch Acceptance Case

In both Figs. 5 and 6, the set up At variable has effected the
patch acceptance rate. The longer At derivers more accep-
tance rate beside the respected identical trend. It is obvi-
ously that the gradual commitment of patches has gener-
ated it. Note that, we certainly aware the duplicate LOC

05 [520) [2050) [50200) [200,nf) 05 [520) [2050) [50,200) [200,inf)
Patch's Length Patch's Length

(b) Including reject rates into percentage plotting

Experimental results including reject rates.

counting for an accepted patch, so that we believe the ac-
ceptance gains from Ar = 30 to At = 365 is sounded. Be-
cause larger patches should consists of more components.
The more components are contained in a patch, the more
dependencies it needs to be clarified, so it will need more
time to screen or wait for an appropriate time to be used. It
makes us conclude if a patch is judged as accepted within
only one commission is not a sounded conclusion.

5.2.3 An Elaboration on the Categorized Size of Patch

We mention briefly about the size of patch categorization in
the above section that it is distributed in exponential. In ad-
dition, each range has its inherent meaning. Small patches
(less than 5 LOC) would be just a minor modification. We
presume that the minor modification would rather be refer-
ence than other larger modification, so that it would inher-
ently has more acceptance possibility. The length between
5 and 20 LOC is an average LOC of interface or method
modification. Between 20 and 50 LOC starts to be a length
of a component modification, which may contain some er-
ror correction. From 50 to 200 LOC is likely to indicate
the modification of a large component, which may consist
of some dependencies. For 200 LOC and more, we believe
it is submitted for a severe defect fixing, or re-implement
the whole component from the scratch. The component
would be a huge one, that would probably consist of many
modules. These elaboration shows the more difficultly of
larger patches to be accepted the whole and committed at
once. The result turned out from the 200 LOC and more
class also validate the noise-prone property for our propose
framework. Since over 100 LOC must be committed to con-
clude 200 LOC and more class as over 50% accepted. It
also makes us believe the noise-proneness and the accuracy
of this case study.

5.3 A Discussion on a Study of Temporal-Based Patch
Commitment Analysis

Comparing the records of accepted patch commission be-
tween two projects in Fig. 7, Eclipse platform is more pre-
dictable. In Fig.7(b), Eclipse platform is more respected

PHANNACHITTA et al.: AN ALGORITHM FOR GRADUAL PATCH ACCEPTANCE DETECTION IN OPEN SOURCE SOFTWARE REPOSITORY MINING

1487

Apache HTTP Server

" Fully and Partially Accepted = ===
E 240 Fully Accepted «sssses= . ke - 240
[=] M
pa ? 1y
o J‘ [} 1
o . . LY '
w 160 - . FL Y | T "1',’ P SO T - 160
o "o . i A T
@ R W T A S T B AN
Q P) ‘\ i P \ n
£ 80 |- A I5 i 4 ! ,, o Moo " - 80
2 h foasa aaV o at Tl 334 A8 e am R P A
- 161 -~ i5" lBena6l sl | 21 137022 e N N et 41518013
B 2 61 g ? et d B g e B 7 1312 A LEAla 1218 12 4 10y
0 2P L 0 2 e D920 k0 0 Qe e 83 BT T Y e e T "."'I"\-".'-i--\--!lL 700955000 o
~ T ~ S — = ~ o = T ~ o = = ~ = — T ~ o — T ~ =
s g s 2 s g s 2 =) g s 2 =] b s = s g s 2 s g s 2
& = = & & & & & = = S = = = = = & & & & o o & &
E : S]) a a) 8 8 8 8 3 g 2 3 2 8 8 3] 2 3 3
S B) S E S S E 8 8]] 8 8 g 8 g 8 8 g 8 8 g g
3 3 3 3 3 3 3 3 8 8 8 8 5 8 5 5 8 5 5] 8 8]]
Timeline
Eclipse Platform
w e Fully and Partially Accepted === = - 1s00
2 Fully Accepted =ss=- \
] "y
B \ Iy
5 1000 | e o 4 1000
u— [N 1y LY
o] .~y 1 \] \ ,i\
T ' \ 1 \ _,"‘* \\ R “
Q9 spp0 . .‘f... . At Vo AR -+ so0
S A Pty Mo ’ \
3 L .’ vy
= e L= e LS |‘
37 - -~ - - ' 5639
010299290005 22257T Ay Tzl 0 §937Y 032003230009 6142 51918125631 213923610p423 510070 0
- = ~ = = - ~ o = o ~ S — - ~ o — = ~ S = = ~ =
s g s 2 =] 3 s 2 =] b s 2 s 3 s 2 s g s = s g s 2
S <4 3 g e g 3 I} e g S =) S g s o S 4 g < I 2 2 2
& a 5 & & = & & 3 3 3 E; A & A & 5 5 5 5 S S = =
] g 8 g 8 8 8 8 8 8 8 8 8] 8] 8 8 8 8 g g 8 g
8] 5] 5 8 5 8 5 8 8 8 8 8 8 8] 8 8 8]] 8 8
Timeline
Fig.10 Comparing submitted and committed patches in Apache HTTP Server and Eclipse Platform.

to our finding conditions. For example, the local highest
relative peaks are always existed in the month that held a
conference as well as the openness level also decreases af-
ter a major released. We believe that Eclipse Platform has a
clear declaration of its development cycles, which is in pat-
tern. (i.e. the whole cycle spans into a year, which begins
in March) Eclipse Platform always releases a new major re-
vision every year around June. Since Eclipse Platform par-
ticipant knows the well-declared project’s check point, they
can work and evaluate their work product more effective and
efficient. They will be able to estimate how much they need
to exert their effort to bring the project to reach the annual
goal. The clear development cycle declaration of an OSS
project also make it possible to perform a self-comparable,
which is a good approach to appraise a project from cycle to
cycle.

There is an additional interesting observation on
Eclipse Platform project. In 2006, Eclipse platform in-
troduced one more annual conference (Eclipse Summit) in
2006. Since then the openness cycle have been shorten from
one year into half year cycle (i.e. from March to October and
from October to March), which is still predictable. In con-
clusion the a clear declaration of its development cycles will
provide more reliability to an OSS project.

5.3.1 Comparing the Result with the Existing Algorithm
To show the value of utilizing our proposed algorithm corre-
sponded to this study, we conduct an experiment with an im-

plementation of the existing coarse-grained algorithm. Fig-
ure 10 shows the result. The x-axis of both graphs are the

timeline in terms of month, and the y-axis means the to-
tal number of committed patches. In Apache HTTP Server
graph, we can see an existing of pulses if we consider only
the fully acceptance case. Pulses on the months that holding
a conference is quite notable, however, the trend of openness
level is undistinguishable enough to study the OSS evolu-
tion pattern. Eclipse Platform is the better example. Eclipse
Platform graph in Fig. 10 shows that it is not enough to study
the temporal-base patch commitment with patch submission
records. From the acceptance rate result in Fig. 6, Eclipse
Platform has a very few number of fully-accepted patches.
It makes us conclude that coarse-grained algorithm is not
powerful enough to study the temporal-base patch commit-
ment (i.e. OSS evolution pattern achievement).

5.3.2 Analytical Result Verification

Since we use mailing lists as patches source in Apache
HTTP Server dataset. In a mail body, it often contains with
talks or discussions, that makes us trace whether the de-
velopers were talking about events. We randomly sampled
mails from the mailing list and read them thoroughly, we
have found out that there are many talking related to event
that was held in a corresponding month. We can find both
before and after an event discussion. For example, many
emails were talked about an upcoming conference, further-
more, some people advertised about the upcoming events
on their email’s signature. To validate the gradual patch ac-
ceptance from accepted patch commitment, we observed the
total number of patch submission in each month. Figure 11
shows that there is an existing month that the number of

IEICE TRANS. FUNDAMENTALS, VOL.E95-A, NO.9 SEPTEMBER 2012

2002/01

=]

1488
Apache HTTP Server
" #Committed Patches = === S d
@ #Submitted Patches 5 5 H
§ g RN
= £ S £ £ - 480
s :]] E]
. L B g BT .
5 £ : ST £ | -
@ s = % 2 = 5 BEE 2
2 3 5 t 2 G B AT el Tel & - 240
£ 2 B S WO SOOI« OO /2SO Y oy A LE 4 160
S E & i A e & o o
=z T . & iy A ;) L 2 a0
£ T T e S A TP e e R IR
g eTTA 1 [N o s L SN N (NN URTI NS NS S T U NS SN T BN R RN | L e Tl 0
— o o ~ o — A ~ o = - ~ = — A ~ o — A ~ o
s g 2 s 2 =) g s 2 =] b s = s g s 2 s g s 2
s 4 =<l S o e g g g e g 3 = S 4 3 g S 4 S =<l
B = B B B S S S S = = 5 35 a 5 5 a = = = &
E : 2 a a 8 8 s s 3 s 2 3] 8 8 s] 8 s s
B B) S E 8 8 -] -] g g g g g 8 8 g] 8 g g
3 3 3 3 3 5 5 B B 5 8 5 5] 5 5] B 5]]
Timeline
Eclipse Platform
w 3200 | #Comm!tted Patches ==== ... o 4 3200
@ #5Submitted Patches =sesese=es a - -
c = = o
£ 2a00 |- 8 £ 5 £ 2400
5 ns : g £
o &8] b §
‘5 I s @ = 2
C 1600 | R T B A cEeT . E - 1600
o LS P = =
3 T 2 = ad e N 0 il
c S, B = Sof ™~ Nty ™o
S soo [e . - S P S -y - wodemd a1 gog
s 4 o . i S8 m S im s roon et rEemmT
= s s g p p N i W AL " NP Ny \
IS A -—_—— Lo -
o Lo T i el R P T MRLEN . N arii i AR T T EE R R HPUTEAN SR B S B B Y
hoy
=2
=<
3
g
8

200204 |
2002/07 &~
200210 |
2003/01 [+
2003/04
2003/07
2003/10
2004/01
2004107

Fig. 11

committed patches was exceeded the number of submitted
patches. (i.e. January 2006 in Eclipse Platform) This fig-
ure also verifies the arouse number of participants when an
event was held. (i.e. March 2000 in Apache HTTP Server,
and March 2007 in Eclipse Platform).

6. Conclusion

We have invented a novel algorithm that fills the unexplored
area of patch-related activities in OSS study. Our proposed
algorithm can identify a portion and gradual patch accepted
cases in the patch acceptance analysis. It will lead re-
searchers to a better understanding of OSS project societies.
Recently, a study based on patch acceptance analysis has
simplified the procedure improperly by omitting from the
study both of the important cases mentioned here. This un-
fortunately led the researchers to a fallacious research con-
clusion, because the cases omitted always occur. To prove
the potential of the algorithm, we constructed a patch anal-
ysis framework and perform two case studies using Apache
HTTP Server, and Eclipse Platform. They are large and
well-known OSS projects.

Our first case study brought many insights into patch
acceptance study, which is improved by the utilization of our
proposed algorithm. The experimental results from our an-
alyzing framework are very interesting. They include larger
size patches and are more likely to be accepted, a conclu-
sion different from that of existing studies. We believe the
reason is that the existing coarse-grained algorithm excludes
the portion and gradual patch accepted cases that has gener-
ated a bias toward larger patches.

2004/10 FL

2005/01 |+

2005/04 —
2005/07
2005/10 *
2006/04 —
2006/07 -
2006/10 —
2007/01
2007/04
2007/07
2007/10

Timeline

Comparing submitted and committed patches in Apache HTTP Server and Eclipse Platform.

In our second case study, we found that exhaustive de-
tails of an OSS committer’s openness (i.e. the level at which
committers accept a suggestion from outside) can be elu-
cidated by extending a temporal-based analysis from our
patch acceptance identification algorithm. The analysis re-
veals two interesting identities of OSS committers’ open-
ness. The first is that a special event occurrence in an OSS
project would affect the committers’ openness level, and the
second finding is that there exists a relationship between
OSS committer’s openness and OSS project evolution.

Both case studies are good examples that show the
promise of our proposed algorithm. In continuing with this
research, we would like to seek more criteria that have been
overlooked or omitted from the existing patch-related activ-
ity studies. This will help researchers come to understand
OSS societies better.

Acknowledgment

The first and third authors are grateful to the internship pro-
gram cooperated and supported between Kasetsart Univer-
sity, Thailand, and Nara Institute of Science and Technol-
ogy, Japan. It bestows a grant as well as an opportunity
for undergraduate student to achieve a wealth experience in
abroad graduated school research.

This research is being conducted as a part of the Next
Generation IT Program and Grant-in-aid for Young Scien-
tists (B), 22700033, 2010 by the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan.

PHANNACHITTA et al.: AN ALGORITHM FOR GRADUAL PATCH ACCEPTANCE DETECTION IN OPEN SOURCE SOFTWARE REPOSITORY MINING

References

(1]

[2]

[3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Bird, A. Gourley, and P. Devanbu, ‘“Detecting patch submission
and acceptance in OSS projects,” Proc. 4th International Workshop
on Mining Software Repositories (MSR), pp.26-29, 2007.

B. Sethanandha, “Improving open source software patch contribu-
tion process: Methods and tools,” Proc. 33rd International Confer-
ence on Software Engineering (ICSE), pp.1134-1135, 2011.

G. Jeong, S. Kim, T. Zimmermann, and K. Yi, “Improving code
review by predicting reviewers and acceptance of patches,” Research
on Software Analysis for Error-free Computing Center Tech-Memo
(ROSAEC MEMO), 2009.

N. Ducheneaut, “Socialization in an open source software commu-
nity: A socio-technical analysis,” Computer Supported Cooperative
Work (CSCW), vol.14, pp.323-368, 2005.

J. Asundi and R. Jayant, “Patch review processes in open source soft-
ware development communities: A comparative case study,” Proc.
40th Annual Hawaii International Conference on System Sciences
(HICSS), p.166, 2007.

P. Weiligerber, D. Neu, and S. Diehl, “Small patches get in!,” Proc.
International Working Conference on Mining Software Repositories
(MSR), pp.67-76, 2008.

K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye,
“Evolution patterns of open-source software systems and communi-
ties,” Proc. International Workshop on Principles of Software Evo-
lution (IWPSE), pp.76-85, 2002.

A. Bacchelli, M. D’Ambros, and M. Lanza, “Extracting source
code from e-mails,” Proc. 18th International Conference on Program
Comprehension (ICPC), pp.24-33, 2010.

N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Extracting
structural information from bug reports,” Proc. International Work-
ing Conference on Mining Software Repositories (MSR), pp.27-30,
2008.

Y.C. Jie Tang, Hang Li, and Z. Tang, “Email data cleaning,” Proc.
11th International Conference on Knowledge Discovery in Data
Mining (KDD), pp.489-498, 2005.

S. Chakrabarti, M. van den Berg, and B. Dom, “Focused crawling:
A new approach to topic-specific web resource discovery,” Proc. 8th
International Conference on World Wide Web (WWW), pp.1623—
1640, 1999.

B. King and I. Provalov, “Cengage learning at trec 2010 session
track,” Proc. 19th Text REtrieval Conference Proc. (TREC), 2010.
M. Yamamoto, M. Ohira, Y. Kame, S. Matsumoto, and K.
Matsumoto, “Temporal changes of the openness of an OSS com-
munity: A case study of the apache http server community,” Proc.
Sth International Conference on Collaboration Technologies (Col-
labTech), pp.64-65, 2009.

N. Smith and J.F. Ramil, “Agent-based simulation of open source
evolution,” Software Process Improvement and Practice, pp.423—
434, 2006.

A. Capiluppi, J.M. Gonzilez-Barahona, 1. Herraiz, and G.
Robles, “Adapting the “staged model for software evolution” to
free/libre/open source software,” Proc. 9th International Workshop
on Principles of Software Wvolution: In Conjunction with the 6th
ESEC/FSE Joint Meeting IWPSE), pp.79-82, 2007.

M.W. Godfrey and Q. Tu, “Evolution in open source software: A
case study,” Proc. International Conference on Software Mainte-
nance (ICSM), pp.131-142, 2000.

E.S. Raymond, The Cathedral and the Bazaar: Musings on Linux
and Open Source by an Accidental Revolutionary, O’Reilly and As-
sociates, 1999.

1489

Passakorn Phannachitta received B.E. de-
gree in Computer Engineering from Kasetsart
University, Thailand in 2011. Now he is cur-
rently a MLE. student at Nara Institute of Science
and Technology. His research interests include
open-source software, data mining, GPUs and
cloud computing.

AKinori Thara received the B.E. degree in
Science and Technology from Ryukoku Univer-
sity, Japan in 2007, and the ME degree (2009)
and D.E. degree (2012) in information science
from Nara Institute of Science and Technology,
Japan. He is currently Asistant Professor at Nara
Institute of Science and Technology. His re-
search interests include the quantitative evalu-
ation of open source software development pro-
cess. He is a member of the IEEE and IPSJ.

Pijak Jirapiwong received the B.E. degree
in Computer Engineering from Kasetsart Uni-
versity, Thailand in 2011. He participated in
an 8 weeks internship program between Kaset-
sart University and Nara Institute of Science and
Technology in Japan from March to April of
2010. He is interested in web mining and search
engine.

Masao Ohira received the B.E. degree from
Kyoto Institute of Technology, Japan in 1998,
M.E. and Ph.D. degrees from Nara Institute of
Science and Technology, Japan in 2000 and
2003 respectivery. Dr. Ohira is currently Asso-
ciate Professor at Wakayama University, Japan.
He is interested in supporting knowledge collab-
oration in software development and supporting
use and development of open source software.
He is a member of ACM, Human Interface So-
ciety, and IPSJ.

Ken-ichi Matsumoto received the B.E.,
M.E., and Ph.D. degrees in Information and
Computer sciences from Osaka University,
Japan, in 1985, 1987, 1990, respectively.
Dr. Matsumoto is currently a professor in the
Graduate School of Information Science at Nara
Institute Science and Technology, Japan. His re-
search interests include software measurement
and software process. He is a senior member of
the IEEE, and a member of the ACM and IPSJ.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

