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SUMMARY There are many roles to play in the bug fixing process in
open source software development. A developer called “Committer”, who
has a permission to submit a patch into a software repository, plays a major
role in this process and holds a key to the successfulness of the project.
Despite the importance of committer’s activities, we suspect that some-
times committers can make mistakes which have some consequences to the
bug fixing process (e.g., reopened bugs after bug fixing). Our research fo-
cuses on studying the consequences of each committer’s activities to this
process. We collected each committer’s historical data from the Eclipse-
Platform’s bug tracking system and version control system and evaluated
their activities using bug status in the bug tracking system and commit log
in the version control system. Then we looked deeper into each commit-
ter’s characteristics to see the reasons why some committers tend to make
mistakes more than the others.
key words: open source software (OSS), committer, bug fixing process

1. Introduction

Open Source Software (OSS) has been attracting a great deal
of attention from a variety of areas as an alternative way of
software use and development. As OSS has become more
common and popular among us, however, OSS projects are
facing with a big challenge on their quality assurance activ-
ities. Due to the growing user base, especially large OSS
projects such as the Mozilla and Eclipse projects, they have
receives a considerable amount of bug reports from the users
on a daily basis [1] (e.g., several hundred bug reports are
posted to the Bugzilla [2] database of the Mozilla project
every day). OSS projects require finding an effective way
of dealing with a large number of bug reports. In an OSS
project, a bug is fixed through the bug fixing process [3]
which starts from the process where the bug is reported in
the project until patches for fixing the bug are submitted into
a software repository. Each bug report in this process is
passed through one or more developers who play different
roles before it is closed.
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In this study, we studied a developer who has a priv-
ilege to submit patches into the software repository, called
Committer. This group of developers play major roles in
the bug fixing process [4]. Their main task is to review (and
sometimes edit) patches posted from other developers and
then submit them into the software repository. Some of them
also perform other tasks including bug resolution and bug
reports management. Using a concurrent version system
(CVS) and bug tracking system (BTS), they resolve bugs by
themselves, join discussions about bugs, verify fixed bugs
by developers, close bug reports, and so forth. As just de-
scribed, committer’s activities are vital for sustaining and
improving the quality of OSS products.

However, committers are not always perfect. Bugs has
been verified or closed in the past are occasionally reopened
to be solved again because committers who verify or close
the bugs might not cautiously review patches for bug fixing
nor fully understand root causes generating the bugs in the
initial trial for bug fixing. This can result in creating an-
other bug report for the same bug again (i.e., reopen bug)
and then wasting additional effort from already busy devel-
opers. These incidents also lead to “surprise defects [5]”
that catch the software practitioners off-guard and disrupt
the workflow of developers.

Eclipse-Platform is the large-scaled and well-known
OSS project. The core developers of this project are em-
ployed by IBM and full-time workers for the project. They
well-organize the project and dedicate to maintaining qual-
ity products. Researchers in the empirical software engi-
neering literature sometimes regard the project as a propri-
etary software development project in a software company
in terms of some common activities (e.g., quality assur-
ance) [6]. Selecting Eclipse-Platform as a case study would
lead to provide a useful insight on both OSS and commercial
software development. At the same time, we believe that an-
swering the following research question could contribute to
improve and/or refine the results of previous studies [7]–[9]
which had relied on the Eclipse-Platform’s data set.

�

�

�

�
RQ: What characteristics relates to the more cau-
tious committers? And how about the lesser one?

We suspected that committers who are more cautious
should have different characteristics from the less-cautious
ones. We classified their activities, based on the conse-
quences to the bug fixing process such as the life cycle of
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the bug, then evaluated and compared each committer using
their activities count, as we attempt to find characteristics
that separate better committers from the others.

By analyzing some committer’s activities which can
have a negative impact on the bug fixing process, in this
paper we try to provide the following contributions:

• Means to identify committers and their activities:
Using commit logs in CVS, we identify committers
from thousands of developers in the Eclipse-Platform
project. If a developer has committed a patch into CVS,
s/he can be regarded as a committer. Then we collect
and analyze their activities recorded on both CVS and
BTS, using the “links” which will be further described
in Sect. 3.
• Better understandings of the consequences of com-

mitter’s activities to the bug fixing process: After
we collect committers’ activities, we look at the conse-
quences to the bug fixing process in terms of the bug
life cycle where we can assume that shorter time to
solve a bug is more preferable for the bug fixing pro-
cess. Analyzing the relationships between commuters’
activities and time to resolve bugs would bring better
understandings of which activities is more preferable
or should be avoided for achieving an efficient bug fix-
ing process.
• Insights on characteristics that make committers

more cautious: Based on the analysis of committer’s
activities and their consequences, we classify com-
mitter’s characteristics into four categories to find a
way that makes committers more cautious in review-
ing and/or fixing bugs. We would like to show that
committers in the project should be aware of the im-
portance of their roles and be cautious in doing their
tasks in order to reduce “surprise defects” that effects
to stakeholders.

In what follows, we introduce our related work and
our motivation of this study in Sect. 2. Section 3 describes
committer’s activities and their consequences in the bug fix-
ing process of OSS development. Section 4 introduces a
data extraction method to answer the research question and
Sect. 5 shows the analysis results. Additional interesting re-
sults that we were able to identify during this work are dis-
cussed further in Sect. 6. Section 7 describes limitations of
this study, and we summarize our study in Sect. 8.

2. Related Work and Motivation

Most of existing studies are focusing on how to reduce the
time to fix bugs since it has been gradually increasing es-
pecially in large OSS projects. There are currently three
promising approaches to improve the bug fixing process. In
what follows, we describe the existing approaches and our
motivation of this study.

2.1 How to Make a Good Bug Report?

A good bug report contributes to reduce the time to fix bugs
because it can help developers to quickly find, replicate and
understand the bugs at hand. However, developers’ informa-
tion needs in bug reports are often unsatisfied, since users do
not know what information are required to fix a problem and
so rarely articulate the problem on software use as develop-
ers can fix it. For instance, users do not correctly report
procedures to reproduce an error (e.g., sometimes they just
say “This option does not work in my computer!”). There-
fore, developers have to ask users to give more information
again and again to identify and fix the error. If things go
wrong, developers cannot confirm the error and then leave it
unresolved reluctantly.

In order to improve cooperation on a bug report be-
tween developers and users, many studies [10]–[14] have in-
terviewed with OSS developers and users to understand the
information needs for bug fixing. For example, through in-
terviews with over 150 developers and 300 reporters of the
Apache, Eclipse and Mozilla projects, Bettenburg et al. [11]
have found that steps to reproduce and stack traces are most
useful in bug reports.

2.2 Duplicate Bug Detection

Users often report the same problem which had been re-
ported by another user in the past or which has already been
fixed by developers. Sometimes developers also try to re-
solve the same problem which had been resolved in other
times. This can happen because there are a large number of
bug reports in the bug tracking system. Both the users and
developers cannot be aware of all the reported bugs though
the searching function is provided to find bugs reported in
the past. In this manner, the same bugs are duplicated in
BTS and then result in wasting developers’ time and efforts.

To avoid duplicate bugs in BTS, several studies [15]–
[18] have tried to detect duplicate bug reports automatically.
For example, Wang et al. [18] present an approach to detect
duplicate bugs based on a natural language processing tech-
niques.

2.3 Re-opening and Reassigned Bugs

Even if a bug fixing task is assigned to a developer, it
may not be completed by the developer and then reassigned
(tossed [1]) to other developers. This often happens because
a triagger assigns a bug fixing task to an inappropriate de-
veloper who does not have sufficient knowledge and skill
to complete the task. In the Eclipse and Mozilla projects,
37% to 44% of bugs are reassigned to another developer [1].
Preventing the bug tossing (assigning a bug fixing task to
appropriate developers) is very effective to reduce the time
to fix bugs.

Several approaches [1], [7], [19]–[24] exist in this
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topic. For instance, Anvik et al. [19], [20] proposed an ap-
proach to assign a bug to an appropriate developer based on
past bug reports with natural language processing. Jeong et
al. [1] also tried to establish a method for the bug assignment
based on a social graph which reflects on social relationships
among developers in the bug assignment. Other approaches
involve in achieving better understandings on why reassign-
ment occurs many times [23] and in creating a method to
predict which bugs will be reopened or get fixed without be-
ing reopened [7], [24].

2.4 Cautious and Incautious Committers

In contrast with the previous studies above, in this paper
we have studied the committer’s activities and their conse-
quences. Our basic assumption on committers is that com-
mitters are not always perfect and sometimes make mistakes
because they are also human-beings. Some of them might
mistakenly review and accept a patch posted by other devel-
opers to fix a bug and then commit it into the repository that
would bring reopen and another bug report. In this study we
are interested in having a clear understanding of committer’s
activities and the consequences to the bug fixing process in
order to emphasis the importance of their activities, avoid
the incautious acts and hopefully reduce breakage and sur-
prise defects in the project.

3. Committer’s Activities and Consequences

This section describes how to capture committer’s activities
in the bug fixing process and how to find the consequences
of the activities to the process.

3.1 Committer’s Activities in the Bug Fixing Process

As described in Sect. 1, committers devote much effort to re-
view (and sometimes edit) patches posted from other devel-
opers to the bug tracking system such as Bugzilla and then
submit the patches into the version control system such as
CVS. Some of them also perform other tasks including bug
resolution and bug reports management on the bug track-
ing system. Therefore, committer’s activities in the past are
recorded in repositories of such the systems which are used
by many researchers as rich information sources to test a hy-
pothesis [4], create a prediction model [7], or performs sta-
tistical analysis [25].

In this paper we focus on committer’s activities
recorded in the bug tracking system especially since we are
strongly interested in capturing consequences of their activ-
ities to the bug fixing process and then finding what char-
acteristics of a committer contribute to more cautious about
the bug fixing. We use 16 metrics which can be extracted
from the repository data as shown in Table 1. The next sec-
tion describes some of the metrics and why we need to see
them.

Table 1 Metrics for measuring committer’s activities.

Metrics Description
BSPR Bad-Status-Pattern Rate: Number of Reopen-after-

verified/closed and Invalid/Duplicate-after-new divided by
the total number of status changes in BTS

RACR Reopen-after-committed Rate: Number of bug that has been
reopened after committed divided by the total number of
commits

MTFB Median Time that a committer takes to Fix Bugs
NASB Number of Activities a committer Showed on BTS
TPJP Time Period that a committer Joined a Project

NMCC Number of Months a committer showed his Contributions
as a Committer

TICC Time Intervals from a latest bug status Change to a Commit
for a bug fix

MBRT Median Bug Review Time: Medial time until a committer
decides to VERIFIED/CLOSED bugs

ABRT Average Bug Review Time: Averatge time until a commit-
ter decides to VERIFIED/CLOSED bugs

NTSB Number of Times a committer RESOLVED Bugs
NTAB Number of Times a committer ASSIGNED Bugs
NTFB Number of Times a committer FIXED Bugs
NTRB Number of Times a committer REOPENED Bugs
NTVB Number of Times a committer VERIFIED/CLOSED Bugs
NTNB Number of Times a committer NEW Bugs
MTRB Mean Time for Resolving Bugs
ATRB Average Time for Resolving Bugs

3.2 Consequences of the Activities to the Process

In Bugzilla, each reported bug is identified by a number
called bug-id, attached with other data such as bug prior-
ity, bug status history, developer’s comment, and so on.
Each bug has its own current status varying from NEW,
ASSIGNED, VERIFIED or CLOSED†. Some of bug sta-
tus have its own resolution such as FIXED, INVALID, and
DUPLICATED [3] to indicate what happened to the bug.
Using these information of the status changes, we can de-
fine good and/or bad consequences to the bug fixing pro-
cess. In this paper when we describe the bug status that
changed from one to the others in the bug history, for bet-
ter clarifications we present the bug history in the form of
bug status patterns. We use “⇒” for separation between bug
status. The time dimension flows from left to right of the
patterns. “. . . ” symbols represent any or many bug sta-
tus changed and we use “()” to show the resolution of the
bug status if it exists. These bug status patterns can start
from as simple as OPENED ⇒ NEW ⇒ ASSIGNED ⇒
RESOLVED (FIXED) to the more complex pattern such
as OPENED ⇒ NEW ⇒ ASSIGNED⇒ RESOLVED (IN-
VALID) ⇒ REOPENED ⇒ ASSIGNED ⇒ RESOLVED
(WORKSFORME). For the former pattern, we can observe
that the bug has been assigned only once before it was re-
solved. This type of pattern usually leads to short or normal
bug life cycle while the more complex one often leads to
longer bug life cycle.

†http://www.bugzilla.org/docs/3.4/en/html/
Bugzilla-Guide.html
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(a) Reopen-after-verified/closed pattern

(b) Invalid/Duplicated-after-new pattern

Fig. 1 The Bad-status-patterns observed in our study.

3.2.1 Bad Status Patterns

We can identify two status patterns that potentially have a
negative effect on the bug fixing process we call Bad-status-
pattern. In this work, we suspect that the bug life cycle
followed Bad-status-pattern might be longer, compared to
the bugs without such bad patterns. Thus, these bugs waste
more developers’ time and efforts. Observing the relation-
ship between the bad status patterns and consequences (i.e.,
the delay of bug life cycle) would help us validate our as-
sumption.

(1) Reopen-after-verified/closed

The first pattern shown in Fig. 1 (a) called Reopen-after-
verified/closed pattern represents that bugs have been RE-
OPENED after they had been marked as VERIFIED or
CLOSED (e.g., . . .⇒ VERIFIED (FIXED)⇒ REOPENED
or . . .⇒ CLOSED (FIXED) ⇒ REOPENED). We suspect
that this pattern occurs when committers do not cautiously
check a patch before they changed status to VERIFIED. So
this bug has to be reopened later (in worse case, the bug
has been left over and no one reopens it). To optimize our
data quality, for the Reopen-after-verified/closed pattern, we
had to exclude results if the time interval between VERI-
FIED or CLOSED status and REOPENED status is longer
than a year or one release cycle. The reasons for this late
reopen is usually because new patch released, new library
introduced, or new class in this version which leads to bug
reopen but not because the developers incautiously reviewed
it and marked this bug as VERIFIED/CLOSED. Fig. 2 (a)
has shown this pattern.

(2) Invalid/Duplicated-after-new

The second pattern is Invalid/Duplicated-after-new shown
in Fig. 1 (b) which indicates that bugs have been detected
as INVALID or DUPLICATE after they had been marked
as NEW (e.g., NEW ⇒ ASSIGNED ⇒ RESOLVED (IN-
VALID) or DUPLICATE). In this case, we suspects that a
developer who marked NEW makes a mistake. This bug

(a) Reopen-after-verified/closed pattern with late reopen

(b) Mistakenly marked as Invalid/Duplicated pattern

Fig. 2 The other patterns excluded from our results.

is not new but actually duplicated or invalid (sometimes in-
valid means it is not even a bug.). We note that we also had
to exclude some cases from this pattern. When a bug had
been reopened (and sometimes fixed) after it was marked as
INVALID or DUPLICATED (e.g., NEW⇒ ASSIGNED⇒
RESOLVED (INVALID/DUPLICATE) ⇒ REOPENED ⇒
RESOLVED (FIXED)), it would mean that there was a de-
veloper who marked the bug as a INVALID/DUPLICATED
fault. S/he misunderstood that this bug is invalid or dupli-
cated, which is actually not. For better clarifications, this
pattern is illustrated in Fig. 2 (b).

(3) Reopen-after-committed

Another bad status pattern can be also captured by using
both CVS and BTS data. If a bug report has been reopened
after committer committed a patch posted by other devel-
opers or himself to CVS, we can consider it as the similar
situation where the Reopen-after-verified/closed pattern oc-
curred.

4. Analysis Method

In order to answer our research questions, we need to mine
repository data from CVS and BTS as the following three
steps: (1) identifying committers from an amount of devel-
opers, (2) finding the bad status patterns and (3) categorizing
committers into four groups.

4.1 Identifying Committers

Before analysis we need to identify who are the commit-
ters, excluding them from thousand of regular developers in
a project. To our knowledge, there is no specific activity that
can decide whether one developer is a committer or not. [4]
suggests only a rough descriptions how they extracted their
committer list. They defined a developer as a committer
who has a privilege to submit a patch to CVS. We also use
the definition and can create a similar list of committers by
scanning every line of commit logs and finding committers’
names. After we get the committers’ list, we can extract the
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information on committer’s activities from BTS.

4.2 Finding the Bad Status Patterns

As described earlier, the bad status patterns would have a
negative impact on the bug fixing process. Using the status
change information preserved in the BTS repository, the pat-
terns Reopen-after-verified/closed and Invalid/Duplicated-
after-new can be detected easily, but the Reopen-after-
verified/closed pattern is a bit difficult to detect since we
need to create links that shows which commits in CVS in-
cludes which patches posted to BTS.

Unfortunately we can only have a narrower vision of
committer’s activities from a commit log. It captures revi-
sion numbers, date of commit and some information about
source code changes. The description about each change
solely depends on committer’s opinion. This description
field has no centralized format and often is recorded in an
ill-organized format (some of them are empty sometimes).
Due to these inconsistencies, the CVS description itself is
not adequate to judge each committer’s behavior. In order
to overcome this problem, we have decided to adapt T. Zim-
merman’s [26] approach to our study. Their approach sug-
gests that despite its inconsistencies, sometimes committer
mentions bug-id in the CVS description. By using bug-id as
a trail, we can identify it as a links from the CVS repository
to the BTS repository. From these links we can look fur-
ther into the BTS repository where we have wider behavior
information to study. The technique on finding these links
has been used in many works (e.g., [8], [26], and [27] have
described these links and illustrated it clearly.) in the field.

4.3 Categorizing Committers into Four Groups

We can measure committer’s activities using the committer
list. The 16 metrics to measure the activities would help us
find which activities induce or avoid the bad status patterns.
Furthermore, by categorizing committers into four groups,
we would like to better understand the reasons why some
committers are better than the others and which character-
istics makes committers more cautious or less. We use the
following procedure to categorize and evaluate committers.

1. Categorizing each committers into four groups depend-
ing on whether committers actively commit patches
or not (i.e., whether committer’s activities are fre-
quently observed on CVS) and whether they actively
review and/or modify bugs or not (i.e., whether com-
mitter’s activities in BTS contribute to frequent bug sta-
tus changes).

2. Evaluating each committer in each group based on
their activity history (i.e., we evaluate him based on
the number of the Reopen-after-committed, Reopen-
after-verified/closed and Invalid/Duplicated-after-new
patterns. The committer with the higher number of the
bad status patterns is regarded as less cautious.)

3. Finding which characteristic(s) is related to the factor
which makes a committer more or less cautious

Fig. 3 Categorization of committers. We used the median value of the
histograms to create the threshold for categorizing them into each group.

Figure 3 illustrates how we categorize committers. We
have noticed in collecting data from the Eclipse-Platform
project that some committers devoted their effort to the
patch commitment (e.g., some committers committed files
to CVS over thousands times.) while some committers pre-
ferred to involve in fixing bugs on BTS. From this wide
range of committer’s activities, it would not be fair to evalu-
ate them without having any normalization. That is the rea-
son we categorized them into the four groups base on their
activities. We collected each committer’s activates based
on the number of committed patches and the number of
changed status in bug reports. Then we created two his-
tograms: one is for the number of committed patches and
another is for the number of changed status in bug reports.
Then we used the median value in each histogram to define
the threshold for categorizing into the four groups (14, 15,
22, and 23 committers in G1, G2, G3, and G4 respectively).
We can consider committer’s characteristics in each group
as follows.

G1: This group of committers prefer to review and commit
patches. They have larger number of patch commits,
compared to the number of bug status changed. In or-
der to evaluate a committer in this group we can use
their Reopen-after-committed rate (RACR). Commit-
ters who cautiously review the patch before they com-
mit would have lower rate than the one who does not.

G2: In contrast with G1, these committers have larger num-
ber of bug status changed, actively take care of bug re-
ports for bug fixing. Because their smaller number of
patch commits, solely counting their commit activities
in CVS is not adequate to evaluate them. We evalu-
ate each committer using the Bad-Status-Pattern rate
(BSPR). Lower BSPR indicates that they are better
committers.

G3: Some committers are very active in both bug fixing and
patch commitment. For committers in the groups, we
can use both of PACR and BSPR.

G4: These committers show no significant activities in both
BTS and CVS. Their activities should be too low to
be considered. As a result, we exclude results of this
group from our analysis.
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5. Results

This section presents the results of our case study of the
Eclipse-Platform project.

5.1 Summery of Data Set

Using both bug reports in Bugzilla and commit logs in
CVS which were created in the Eclipse-Platform project, we

Table 2 Summary of data set extracted from Eclipse-Platform.

Target period 2001/10/01–2010/01/31

Commits
# of commits in total 30,833
# of links between CVS and BTS 1,193
# of Reopen-after-committed 140

Bug reports

# of bug reports in total 85,387
# of bug reports involved with committers 52,013
# of bug reports with Reopen-after-
verified/closed

405

# of bug reports with Duplicate/Invalid-
after-new

696

Developers
# of developers in total 2,584
# of committers (of 2,584 developers) 74

Fig. 4 The life cycle of Reopen-after-committed and normal bugs.

Fig. 5 The life cycle of Invalid/Duplicated-after-new, Reopen-after-
verified/closed and normal bugs.

could collect 85,387 bug report data and over 30,833 com-
mit log data. As a result, we captured activities of 2,584
different developers from October 2001 until January 2010.
Table 2 shows the summary of our data set which was ex-
tracted according the extraction method described in the pre-
vious section.

Figure 4 shows one of the bad status patterns (Reopen-
after-committed) tends to take longer time than other bugs
until the bugs were resolved. As a result of Mann-Whitney’s
U test, we confirmed a significant difference (p < 0.01)
between the two kinds of bug resolution time. We also
did the same test for the rest of the patterns (Reopen-
after-verified/closed, Invalid/Duplicated-after-new, and nor-
mal bugs) and confirmed a significant difference (p < 0.01)
between them. We can say that the bug life cycle in Fig. 5
also have different number of days to resolve bugs. From
these results, we can say that committer’s incautious actions
in the bug fixing process make bug resolutions slower and
that the rate of Bad-status-patterns (i.e., RACR and BSPR)
can be used as indexes for measuring committer’s cautious-
ness to the bug fixing tasks.

5.2 RQ: What characteristics relates to the more cautious
committers? And how about the lesser one?

After we evaluate committers in each group, we can answer
our research question. We used the correlation-coefficient
as a statistical tool to find a linear relationship between each
committer’s characteristics. We have compared each com-
mitter with the total of the 16 metrics.

More experienced committer tends to submit cleaner
patch: From all metrics data we collected, number of
months committer joined the project (NMCC) and the
Reopen-after-committed rate (RACR) only showed a neg-
ative linear relationship with the correlation coefficient of
−0.68. Interestingly, when they has been promoted to be a
committer for longer period of time, they submitted patches
which tends to be cleaner. In the other words, the more they
experienced the more they would act cautiously.

6. Discussions

6.1 Committers who Mistakenly Verified/Closed Tend to
Mistakenly Introduce a New Bug

After we answer our research question, we suspects
that if committers have larger number of Reopen-after-
verified/closed bugs, they might also have relatively larger
number of Invalid/Duplicated-after-new bugs. In the other
words, when committers VERIFIED/CLOSED bug negli-
gently, they are likely to mark bug status as NEW. So we
looked further into the group of committers who actively
contributed to bug fixing tasks (G2). Figure 6 shows the box
plot between these two patterns. We can confirm that larger
number of false VERIFIED/CLOSED leads to larger number
of false NEW.
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Fig. 6 The relationship between Reopen-after-verified/closed and
Invalid/Duplicated-after-new bugs.

Table 3 Analysis results on the relationship between the bad status pat-
terns and 16 metrics.

correlation coefficient
G1 G2 G3

Metrics RACR BSPR RACR BSPR
BSPR −0.25 N/A −0.26 N/A
RACR N/A −0.22 N/A −0.26
MTFB −0.14 −0.21 −0.45 0.34
NASB −0.35 −0.12 −0.26 0.13
TPJP −0.34 0.05 −0.32 0.39

NMCC −0.68 −0.02 −0.37 0.34
TICC 0.17 −0.15 0.37 −0.21
MBRT −0.22 −0.10 −0.20 0.17
ABRT 0.04 −0.24 −0.19 0.06
NTRT 0.08 −0.11 −0.26 0.14
NTSB −0.26 −0.09 −0.23 0.11
NTAB −0.29 −0.13 −0.24 0.11
NTFB −0.39 −0.04 −0.28 0.29
NTRB −0.26 −0.16 −0.16 0.04
NTVB −0.24 −0.09 −0.14 0.08
MTNB −0.05 −0.09 −0.08 −0.11
MTRB 0.14 −0.39 −0.15 −0.11

6.2 No Relationship between Mistakes in CVS and BTS

When committers are not cautious before deciding to com-
mit a patch into CVS, they might not cautiously change
bug status in BTS either. Interestingly, for the committers
who were active in both tasks (G3), the relationship between
their Reopen-after-committed rate (RACR) and Bad-status-
pattern rate (BSPR) showed no significant linear relation-
ship (correlation coefficient: −0.26). One explanation is
that because of their wide range of activities, the commit-
ter’s footprints in G3 are scattered all over the place, that is,
their activities were distributed un-uniformly. More simple
explanation is that when the committers decided to change
bug status in BTS, they might use different kind of “cau-
tiousness” from the patch commitment in CVS.

6.3 Not All Reopened Bug are Bad

When we observed the bug status change patterns in BTS,

we have found that not all reopened bugs has a negative ef-
fect to the project, which is contradict to the popular belief.
In the Eclipse-Platform project, we could identify six types
of reopened bugs. Each type has different impact on the
bug life cycle. Some patterns show that reopen can have
a positive effect such as . . .⇒ RESOLVED(WONTFIX)⇒
REOPENED⇒ ASSIGNED⇒ RESOLVED(FIXED). We
manually observed these patterns and found that some de-
velopers simply changed the bug resolution to WONTFIX
because they did not have enough knowledge to fix it and
then the bug has been REOPENED later and FIXED by
other developers. Other example is that the reopened-after-
later pattern (. . .⇒ RESOLVED(LATER)⇒ REOPENED)
were actually intended. LATER resolutions usually mean
that the bugs must wait for the new patch to be fixed, that
they were not the target milestones or that they needed some
minor tweaks later. We would like to suggest that it is im-
portant for both the researchers and practitioners to be aware
of these several types of reopen and their difference impacts.

7. Limitations

7.1 Activities in CVS

In our extraction process, we have collected each commit-
ter’s patch commitment activities by observing CVS de-
scriptions that has links to the bug database. Unfortunately,
the current method can only extract small portions of links,
compared to all of the activities in CVS. From 30,833 com-
mits in commit log, we could identify only 1,193 links with
unique bug-ids. To reduce the bias resulted from the small
sample size, our goal was to capture as the largest represen-
tative of the population. As we explained earlier, we (hope-
fully) archived this goal by adapting the Zimmermann’s ap-
proach [26] in order to overcome this limitation.

7.2 Interpretations of the Bug Status Patterns

We acknowledge that observing the developer’s tasks solely
based on the bug status patterns also has some limitations.
One status pattern can have several meanings or can be in-
terpreted in many ways such as the . . .⇒ REOPENED⇒
ASSIGNED⇒ NEW⇒ RESOLVED(INVALID) patterns.
For instance, let A be a developer who reopens this bug
and let B be another developer who changes its status to
RESOLVED and add INVALID to its resolution. We can
interpret this pattern in two ways.

First, when A decided that this bug has to be reopened
(i.e., due to new patch, class, library or other reasons), A
assigned this bug to B. Later B found out that it is invalid
(i.e., not a bug, false reproduce, etc.). In this case, it is an
A’s fault. For the second case, if this bug has never been
fixed before and A decided to reopen this bug, assigned it
to B, asked B whether this bug is invalid or not. Then, B
helped A confirm that this bug is really invalid. Thus A has
helped shorten the bug’s life cycle.
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In order to optimize our result accuracy, we have nor-
malized the data by using only the bugs with same prior-
ity, assuming that developers are the bug tracking system
properly. After randomly selecting some bugs to observe
their status patterns manually, we satisfactorily found that
most of the patterns used in this study were straight for-
ward. We could easily identify a developer who mistakenly
verified bugs, using the Reopen-after-verified/closed and the
Invalid/Duplicated-after-new patterns respectively.

However, there might be more activities that lead to the
same results which we have to include in our future works.
For the committer’s characteristics (i.e., the 16 metrics) we
observed, we also noticed that there might be more things
that we did not observe in this study. Please noted that
the results from this study is focusing only on the Eclipse-
Platform development community. This community is well-
organized and have full-time workers from IBM. Other OSS
communities can have difference structures which might de-
rive difference results from the same approach.

8. Conclusion and Future Work

In this paper, we have focused on a developer who plays
major role in bug fixing process called Committer. We have
suspected that when the bugs are taken care by more cau-
tious committers (and verified by cautious committers), their
life cycles tends to be shorter. We identified committer’s ac-
tivities that have different consequences to the bug fixing
process and categorized each committer based on their ac-
tivities and then found the related characteristics that sepa-
rated good committers from bad ones. Our findings can be
summarized as follows.

• We were able to determine the patches that have been
reopened after it was committed. When committers
committed the patch and the patch had to be reopened
later, it tends to have the longer bug life cycle.
• We identified several bug status patterns which present

that when bugs follow the Bad-status-patterns, they
have the longer bug life cycle than other patterns.
• From a wide range of committer’s activities, we cate-

gorized committers into four types of groups.
• Based on the categorization, we could identify that

committers who are active in CVS have more experi-
enced. Such the committers tend to commit cleaner
patches with the lower Reopen-after-committed rate
(RACR).

Based on these findings above, we could answer our
research question “What characteristics relates to the more
cautious committers? And how about the lesser one?” in
this paper: more cautious committers tend to be more ex-
perienced developers who are very active in committing
cleaner patches rather than reporting bugs. In contrast, less
cautious committers tend to commit less quality patches and
bug reports that would cause the bad status patterns of bug
reports (i.e., reopen after patch committed, verified, and
closed).

We believe that our findings through a case study of
Eclipse-Platform do not only provide a useful insight for
both OSS and commercial software developers who dedi-
cate to software maintenance and/or quality assurance ac-
tivities, but also contribute to improve and/or refine software
development support methods which had been proposed in
existing studies (e.g., [1], [20], [28]).

In order to observe a variety of results from different
OSS communities, our future work needs to apply the ap-
proach used in this study to another OSS projects. We would
like to find other characteristics which makes committers
more cautious. We also would like to observe another devel-
oper’s role in the bug fixing process and hopefully receive
useful results that would benefit open source development.
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