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Abstract: Many license identification tools have been proposed to support OSS reuse. License identification tools
automatically identify OSS licenses declared in source files. Ninka is one of the most accurate license identification
tools. Because OSS licenses are often newly created or inherited, rules built into license identification tools need to
be created and updated on a regular basis. However, when a large number of unknown licenses are detected in large
OSS products, it is not easy to manually create new rules. In our previous studies, we proposed a method for clustering
license statements that Ninka determined to be unknown. In this paper, we propose a method to automatically generate
license rules from the clustered license statements. Our approach further filters the license statements from the created
clusters to extract sequential patterns and converts the extracted patterns into regular expressions. We conducted con-
duct a case study where our method is applied to 1,821, 3,561 and 2,838 unknown license statement files respectively
collected from FreeBSD v10.3.0, Linux Kernel v4.4.6, and Debian v7.8.0, to confirm the usefulness of our method. As
a result, we confirmed that our method successfully generated license rules that take into consideration the orthograph-
ical variants and that our method also efficiently identified licenses with a small number of license rules. Furthermore,
we found that adding the license rules generated by our method to Ninka improves the licensing rule performance.
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1. Introduction

In modern software development, open source software (OSS)
components are often used via application programming inter-
faces (APIs) [4]. An OSS component can be reused as part of a
commercial software product by strictly complying with the OSS
license specified for each source file [1]. Currently, 115 OSS li-
censes *1 have been approved by Open Source Initiative (OSI)．In
general, OSS licenses are declared in the header part of a source
file. Developers need to identify and understand the terms of each
OSS license which is appropriate for their commercial software
products, in order to avoid license violations [4].

Several license identification tools have been proposed to help
developers identify OSS licenses. The license identification tools
output a list of names OSS license names, using license rules pre-
defined by regular expressions [1], [5], [6], [7]. Of the existing
tools, Ninka [1] identifies OSS licenses with the highest accu-
racy. Ninka reduces false positives (e.g., incorrectly judging an
unknown license as a known license) by distinguishing between
unknown and known licenses. Because of the need to avoid li-
cense violations when incorporating OSS components into com-
mercial products, it is heavily important to reduce false positives

1 Graduate School of Systems Engineering, Wakayama University,
Wakayama 640–8510, Japan

2 The Japan Research Institute, Limited, Shinagawa, Tokyo 141–0022,
Japan

3 Faculty of Informatics, The University of Fukuchiyama, Fukuchiyama,
Kyoto 620–0886, Japan

a) higashi.yunosuke@g.wakayama-u.jp
b) masao@sys.wakayama-uc.ac.jp
c) manabe-yuki@fukuchiyama.ac.jp

of license identification tools. The biggest weakness of rule-
based license identification tools such as Ninka is that license
rules (e.g., regular expressions) must be updated manually, each
time the tools encounter new OSS licenses (e.g., the licenses are
unknown to the tools).

The creation of license rules is a time consuming manual task,
since it involves visually inspecting unknown licenses and creat-
ing regular expressions for each sentence while considering or-
thographical variants. The simplest way to automate the creation
of license rules is to add license statements as-is. However, such
an approach would generate a huge number of license rules when
a large number of unknown licenses are detected. Consequently,
the effort required for rule-naming makes this approach impracti-
cal.

The goal of this study is to construct a method to automat-
ically generate candidate license rules to be incorporated into
rule-based license identification tools in order to address the is-
sue above. There are two requirements that the generated li-
cense rules should meet: (1) metacharacters with regular expres-
sions should be used and (2) a large number of license statements
should be identified with a minimum number of license rules.
To achieve these requirements, we are building a method which
consists of the following three steps for generating license rules
automatically.
(Step 1) Grouping source files with unknown licenses:

Group source files that cannot be identified by the license
identification tools by OSS license.

*1 https://spdx.org/licenses/, accessed on April 1, 2022.
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(Step 2) Checking orthographical variants for a single license:
Each group of source files with a single license is checked
to extract expressions patterns for a single license. Check
each group of source files and extract expression patterns for
a single license.

(Step 3) Generating license rules: Tokenize license state-
ments as regular expressions and generate license rules that
can be matched to new licenses.

In our previous study [2], [3], we proposed a clustering method
to classify the license statements of detected unknown licenses to
automate Step 1. In this paper, we focus on Step 2 and Step 3
to automatically generate license rules from each cluster created
by the clustering method. First, filtering by the Levenshtein dis-
tance is applied to license statements belonging to each cluster
to extract the license statements for which license rules should
be generated. Next, sequential pattern mining is used to extract
patterns of the license statements. Finally, the output sequential
patterns are converted to regular expressions.

In this paper, we address the following research questions to
confirm the usefulness of our method and conduct a case study
where our method is applied to 1,821, 3,561 and 2,838 unknown
license statement files respectively collected from FreeBSD
v10.3.0, Linux Kernel v4.4.6, and Debian v7.8.0, to answer re-
search questions.
RQ1: How many license rules could be aggregated by metachar-

acters with regular expressions?
RQ2: Is the number of license rules generated by our approach

less than the AS–IS method?
RQ3: Does our approach generate licensing rules with better per-

formance than the AS–IS method?
As a result, we confirmed that our method successfully gener-

ated license rules that take into consideration the orthographical
variants and that our method also efficiently identified licenses
with a small number of license rules. Furthermore, we found that
adding the license rules generated by our method to Ninka im-
proves the performance of the license rules.

The rest of the paper is organized as follows. Section 2 de-
scribes existing license identification tools and our motivation for
this study. Section 3 presents our approach and Section 4 shows
a result of our case study. In Section 5, we discuss the result and
threats to validity in our case study. Section 6 introduces related
work and Section 7 summarizes this paper.

2. License Identification Tools and Limitations

In this chapter, we describe the mechanism of existing license
identification tools and the technical challenges for automating
license rule generation.

2.1 License Identification Tools
To reuse OSS as a part of software, the developer must com-

ply with the OSS license. Figure 1 shows an example of license
statements for the BSD3 license.

In general, license statements is written as source code com-
ments in the source file. To reuse OSS, it is necessary to read
license statements in all source files to identify OSS licenses.
In order to help identify OSS licenses, license identification

Fig. 1 An example of license statements (BSD3).

tools [1], [5], [6], [7], [8] have been proposed. The rule-based
approach for identifying OSS licenses is predominant currently
since accurate identification is essential for avoiding legal risks
involve in reusing OSS with misidentified licenses.

The tools identify OSS licenses (e.g., license names) using
rules which we call “license rules”. A license rule is defined by
tying license statements to a license name. The license rules are
mainly based on regular expressions [1], [5], [6], [7] or similar-
ity of license statements [8]. By using regular expressions, the
tools can distinguish tiny differences among strings such as li-
cense versions. This is critically important for practitioners since
different versions of the same license are sometimes incompati-
ble each other (e.g., different meanings from a legal perspective).
Using similarity of license statements [8] contributes to reducing
costs in creating license rules but leads to low identification per-
formance (55% of precision [1]) because the similarity-based ap-
proach cannot identify tiny differences among license statements.

However, since new licenses and orthographical variants ap-
pear every year, it is necessary to create and add license rules
manually on an ongoing basis. The most accurate license identi-
fication tool, Ninka (precision 96.6%) [1], can identify new li-
censes and orthographical variants of existing licenses as un-
known licenses, but the license names can only be confirmed
manually.

Table 1 summarizes license rules creation tasks: (1) classifica-
tion of license statements, (2) checking orthographical variants,
(3) generating rules and (4) Naming licenses. All tasks should be
automated to reduce the cost for keeping a license identification
tool up-to-date. As shown in Table 1, Ninka [1] and FOSSol-
ogy [8] need to be maintained manually for all tasks except for
(2) of FOSSology. On the other hand, our method aims to au-
tomate the process of (1) through (3) to support maintain regular
expression-based license identification tools (especially for Ninka
in this study). For the remaining task (4), our method does not in-
tend to automate, since it requires a high level of legal knowledge
for naming licenses.

2.2 The License Rules of Ninka
In order to be able to identify unknown licenses, new license

rules need to be created and added. This section details two types
of licensing rules used in Ninka as an example.
Rules for identifying license sentences This type of license

rule is a regular expression to identify each sentence (period-
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Table 1 License rule creation tasks to be automated by our study.

Ninka [1]
(regular expression)

FOSSology [8]
(similarity threshold)

Our Method
(regular expression)

1. Classification of license statements Manual Manual Automated
2. Checking orthographical variants Manual None (※) Automated
3. Generating rules Manual Manual Automated
4. Naming licenses Manual Manual Manual

(※) FOSSology has no process to reflect tiny orthographical variations in license rules, since FOSSology uses text-similarity to find a target
license statement similar to a license rule. This mechanism facilitates the rule creation task, but reduces the accuracy of the license identification.

separated) in license statements. For example, the BSD3 li-
cense has a total of six different license sentences. Therefore,
six regular expressions must be added to identify each sen-
tence. In addition, metacharacters of the regular expressions
are used to take into account any orthographical variants of
the license sentences. The following is an example of a rule
to identify one of BSD3’s license sentences as “BSDcond-
Source” in the format <license sentence name>:<regular
expression>.
BSDcondSource : Redistributions? of source code must re-

tain the (above )?copyright notice,[...]:

Rules for identifying license name This type of license rules
is rules to identify license names expressed as sequences of
one or more license sentence names. If the specified se-
quence of license sentences matches the rules in Ninka, the
license name is output. At this time, If the corresponding li-
cense name rule is not added, Ninka outputs that it is an un-
known license. The following is an example of a rule to iden-
tify the BSD3 license in the format <license name>:<license
sentence name>.
BSD3 : BSDpre, BSDcondSource, BSDcondBinary, BSD-

condEndorseRULE, BSDasIs, BSDWarr

The reason why there are two types of license rules is to min-
imize the number of license rules to be implemented. For ex-
ample, the BSD2 license omits one clause from the BSD3 li-
cense, and the rest of the license sentences is redundant. There-
fore, Ninka has been devised to provide rules to identify license
sentences so that duplicate regular expressions do not have to be
added. However, it is also a fact that more rules are needed to
identify license statements than to identify license names. For
BSD licenses, 5–6 regular expressions are required. In addition,
each rule to identify a license sentence needs to be named by
the tool authors. In the following, we define a “license rule” as
regular expression for identifying a license statement and aim to
automatically generate license rules.

2.3 Technical Challenges
Ninka is designed to minimize the number of license rules, it

takes a lot of effort to manually create license rules themselves.
The goal of our study is to automatically generate candidate li-
cense rules to support the creation of license rules. In our pre-
vious study [3], we proposed a clustering method to classify un-
known license statements by license name. In this paper, we ex-
tract expression patterns from clusters classified by our clustering
method and generate regular expressions. In order to automat-
ically generate license rules, the following two technical chal-
lenges need to be addressed.

C-1: Dealing with orthographical variants Unknown licenses
are output by Ninka not only because of new licenses, but
also because of orthographical variants in a license state-
ment. Orthographic variants should be caught heuristically
by manual visual inspection of the license statement. How-
ever, when a large number of unknown licenses are output, it
is very labor-intensive to visually inspect each sentence and
investigate the orthographical variants. Therefore, it is desir-
able to output license rules in which orthographical variants
are taken into account by metacharacters of regular expres-
sions.

C-2: Generating as few rules as possible The simplest way to
create license rules is to directly add license statements as-is
to Ninka. However, when a large number of unknown li-
censes are detected, a large number of license rules are gen-
erated, and it requires a great deal of effort to name the rules.
Therefore, simply adding license statements as-is would be
time-consuming and cannot be maintained on an ongoing
basis. In this study, we focus on the automatic generation
of license rules for identifying license sentences, and aim to
build a method to identify as many license sentences as pos-
sible with as few rules as possible.

3. Proposed Method

This section describes our proposed method for automating li-
cense rule generation. Figure 2 shows an overview of the pro-
posed method consisting of the following 5 major processes.
3.1 First, the clustering method of our previous studies [2], [3]

is used to classify the unknown license statements according
to the similarity of the word vectors (Bag-of-Words).

3.2 Next, the license statements that cannot be classified due to
slight differences in minor versions are flittered out as out-
liers by the similarity based on the Levenshtein distance.

3.3 In the second half of the process, license rules are con-
structed from frequently-used license statements in order to
prevent the generation of a large number of license rules.
First, sequential patterns of words are extracted from sen-
tences in license statements using BIDE [9] which is one of
the sequence pattern mining algorithms.

3.4 Next, short patterns that cannot be license rules such as sim-
ply “GPL” or “License” are removed from extracted sequen-
tial patterns.

3.5 Finally, in order to generate license rules that consider ortho-
graphical variants, word sequential patterns are represented
using metacharacters of regular expressions.

c© 2023 Information Processing Society of Japan 4
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Fig. 2 An overview of the automated license rule generation process.

Fig. 3 An example of a dendrogram: Ci, C j, Cp are candidates for a clus-
ter. S Ci and S Ci are single (minimum) clusters that only have two
data. H(Cx) and H(S Cx) are dissimilarities between candidate clus-
ters, based on the the Euclidean distance.

3.1 Hierarchical Clustering of OSS License Statements
In our previous study [2], [3], we proposed a clustering method

to automate the grouping of license statements in Step (I) de-
scribed in Section 1. It consists of the three parts as follows.
3.1.1 Extracting License Statements for Unknown Licenses

We exploit Ninka to extract license statements from source files
with unknown OSS licenses. It outputs license statements as un-
known license files when it cannot identify OSS licenses.
3.1.2 Filtering GPL/BSD Family Licenses

Before clustering, our method classifies license statements into
GPL family licenses, BSD family licenses or others. GPL family
or BSD family licenses have version numbers and some derived
licenses. Even if there is a difference of just one word between
two license statements, it may mean there are two distinct differ-
ent licenses. This characteristic is not suitable for machine learn-
ing approaches. We use key phrases and remove license state-
ments for GPL/BSD family licenses in advance.
3.1.3 Hierarchical Clustering

At first, each license statement is converted to a Bag of Words
(BoW) vector. Then, Ward’s method is applied to the BoW vector
to create a dendrogram based on the Euclidean distance among li-
cense statements. Figure 3 shows an example of a dendrogram.
Finally, based on the dendrogram, clusters are generated. If two
clusters Ci and C j will be not merged into a cluster Cp, the con-
dition for pruning the two clusters is as in Eq. (1).

H(Cp) > H(S Ci) and H(Cp) > H(S C j) (1)

In the previous study [2], [3], we calculated and evaluated the per-

centage of clusters consisting of a single license. The ratio of
the single license clusters was high enough for FreeBSD v10.3.0
(91.7%) and Linux Kernel v4.4.6 (90.7%) respectively, but it was
not so high for Debian v7.8.0 (69.1%). Since Debian is a Linux
distribution which consists of many packages with many kinds of
OSS licenses.

3.2 Filtering Out Outliers from Each Cluster
Since our clustering method is not perfect as described above,

some percentage of the created clusters contain license statements
of multiple OSS licenses. This is mainly due to slight differences
in minor versions of a license statement. In this step, such mi-
nor versions are filtered out as outliers by the similarity based on
the Levenshtein distance. Levenshtein similarity is defined by the
following Eq. (2), where sim(d, d′) is the similarity between two
license statements (d, d′) belonging to a cluster, L(d, d′) is the
Levenshtein distance between d and d′, and len(d) and len(d′) are
lengths of strings.

sim(d, d′) =
L(d, d′)

max{len(d), len(d′)} (2)

The selection for representative license statements d is conducted
based on the following Eq. (3), where D is a set of license state-
ments in a cluster and s is threshold for filtering license state-
ments.

{d ∈ D | max{n {d′ | sim(d, d′) > s}}} (3)

After d is selected, license statements whose similarity to d is
greater than a threshold s are extracted as outliers from the cluster.
Since there can be multiple d in a cluster, the extraction process
is repeated for the same cluster until there are no more license
statements with a similarity higher than the threshold. License
statements excluded by this filter will not generate the license
rules described in Section 3.5.

3.3 Extracting Statement Patterns with BIDE
In order to generate license rules that consider orthographical

variants, fundamental expression patterns are extracted as a word
sequence of license sentences in each cluster. The sequential pat-
tern mining algorithm BIDE [10] is used to extract the word se-
quence. In general, a sequential pattern mining algorithm pre-
fixes each element of sequence data, repeatedly searches for the

c© 2023 Information Processing Society of Japan 5
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Table 2 Examples of word sequences in license statements.

No. Sentence
1 (This), (is), (MPL)
2 (This), (software), (is), (MPL)
3 (This), (programs), (is), (MPL)

Table 3 Closed sequential patterns extracted with BIDE.

No. Pattern Support
1 (This) → (is) 3
1 (This) → (is) → (MPL) 3

subsequent elements, and extracts sequential patterns that satisfy
the frequency (hereafter referred to as “support”). Among se-
quential pattern mining algorithms, BIDE is one of the fastest
algorithms to extract sequential patterns. If there are three sen-
tences as showed in Table 2, two sequential patterns in Table 3
will be extracted. In this Table 3, sequential pattern “(This) →
(is)→ (MPL)” and “(This)→ (is)” have support 3. Then, “(This)
→ (is)” is not extracted as a sequential pattern because this se-
quential pattern is a subsequence of “(This)→ (is)→ (MPL)” by
BIDE. BIDE achieves fast extraction of sequential patterns by
extracting only closed sequential patterns such as “(This)→ (is)
→ (MPL)”.

3.4 Removing Short Statement Patterns
Before building license rules, our method removes short state-

ment patterns. These statement patterns are not suitable for con-
structing license rules because they tend to match multiple li-
censes. In our preliminary study, we found short license state-
ments such as “GPL” and “License”. When applying BIDE to
clusters including these short license statements, BIDE will pro-
duce “(GPL)” or “(License)” as statement patterns. In this phase,
our method removes statement patterns with lengths shorter than
the threshold are deleted.

3.5 Building License Rules
Extracted expression patterns in the previous BIDE process are

used to build license rules. Each license rule is written in regu-
lar expressions. In this process, our method finds words between
adjunct two words in each sequential pattern. For each pair of
two adjacent words in the sequential pattern, sequences from one
word to another word are found from license sentences including
the sequential pattern.

If a word in a license sentence is “(Wn)”, a sequen-
tial pattern is represented by “(W1), (W2)”. “(Xn)”, indi-
cates a word added between two elements in the sequen-
tial pattern. Therefore, a license rule is expressed as
“W0X0 W1X1 W2X2 . . .Wn−1Xn−1 WnXn Wn+1”. For example,
in 2, if “(Wn)” is “(This) → (is) → (MPL)”, then “(Xn)” corre-
sponds to “(software)” or “(program)”. W0 and Wn+1 mean the
beginning and the end of a license sentence respectively. Each
Xi{i = 0, 1, 2, 3, . . . , n, n + 1} is determined in the following rules.
At first, the position of “Wi” and “Wi+1” is identified. Then, if
no phrase appears between them, Xi = φ. If a specific phrase
“P1” in all the license sentences, Xi = P1. If P1, P2, . . . , Pm ap-
pear in the license sentences, Xi = “(P1|P2|..|Pm)”. In addition,

Fig. 4 Use scenario for license rule generation with our method.

If Pn ∈ P1, P2, . . . , Pm and Pn are empty, Pn is converted to “.+”
and then Xi = “(P1|P2|..|Pm)?”.

3.6 Use Scenario
Here, we describe a usage case of our proposed method. The

Fig. 4 illustrates the use scenario. The proposed method assumes
a scenario where (0) a developer runs a license identification tool
(Ninka) for OSS that the user wants to reuse and needs to know
licenses which cannot be identified by Ninka. First, (1) the devel-
oper applies our method to unknown licenses to generate candi-
date license rules. Next, (2) the developer names the license rule
candidates manually by looking at the SPDX license list *1 and
other information, and then (3) adds the named license rules to
Ninka. The named license rules are added to the end of Ninka’s
rule file. Next, (4) the developer runs Ninka again to identify li-
cense names of unknown licenses, including unknown licenses
which are filtered out in the license rule generation process de-
scribed in Section 3.2. Finally, (5) the developer manually iden-
tifies unidentified licenses remained even after adding the license
rules in (3).

We believe that the performance of license identification tools
can be continuously maintained through the above five tasks.
However, (2) and (5) are manual tasks and involve a trade-off
relationship. The more license rules generated, the more license
statements are matched (i.e., the effort for naming will increase).
If either (2) or (5) is a very time-consuming task to complete, it
would be difficult to maintain license identification tools. There-
fore, license rules generated by our method should contribute to
identifying as many license sentences as possible with as few
rules as possible.

4. Case Study

We conducted a case study to address our research questions.

4.1 Dataset
Thiscase study uses license statements which are identified by
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Table 4 Summary of dataset used in this case study.

Project Release #files #licenses The way to extract unknown license files

FreeBSD-10.3.0 Apr, 2016 1,821 69
Apply Ninka to Source files of FreeBSD-10.3.0 *2

and then extract source files classified into unknown license.

Linux-4.4.6 Mar, 2016 3,561 33
Apply Ninka to Source files of Linux-4.4.6 *3

and then extract source files classified into unknown license.

Debian-7.8.0 Jan, 2015 2,838 194
Sampled one file from each package managed in Debian-7.8.0 *4,
apply Ninka to the set of source files
and then extracted source files classified into unknown by Ninka.

Ninka-1.1 (2013, July) *5 as unknown. These are the same dataset
in our previous study [3] as shown in Table 4. The source files are
written in C, C++, Java, Python or Lisp and are extracted from
FreeBSD-10.3.0 (FB), Linux-4.4.6 (LI) and Debian-7.8.0 (DE).
These projects were released 2-3 years after the release of Ninka-
1.1. The target files for the detection of unknown licenses are dif-
ferent for each project. FB and LI projects have their own set of
source files as the target of detection. Note that target files for DE
are randomly selected from each software packages in DE. The
reason for targeting software packages is that a software package
consists of a large number of software and we want to create a
dataset consisting of a larger number of licenses. The first author
of the paper manually reviewed all the extracted unknown license
statement files and identified OSS licenses in the unknown license
statement files.

4.2 Thresholds
Our approach requires thresholds for removing license state-

ments from a cluster and for extracting statement patterns. In
what follows, we explain how to set these thresholds.
4.2.1 Maximum Similarity for Removing License State-

ments Regarded as Outliers
In this case study, we use 94% as the maximum similarity to re-

move license statements from a cluster. To set this threshold, we
conducted a preliminary study. In the study, we calculated simi-
larities of 1,000 pairs of license statements in which each license
statement corresponds to different licenses in Debian v7.8.0. The
result showed that the maximum of similarity was 93.5% in case
of a pair of license statements for LGPLv3 and for LGPLv2.1.
Thus, we use 94% as the threshold.
4.2.2 Minimum Length of License Statement Patterns Suit-

able for License Rules
To determine the minimum length of the number of elements,

we counted words in Ninka’s license rules. As a result, we have
identified a rule with the lowest number of words (“This program
is free software”). The number of words in the rule is 5 but we
set the minimum length of the number of word elements to 3, be-
cause we anticipated variations without adjective words such as
“This” and “free” could be included in the dataset.

4.3 Result
4.3.1 RQ1: How Many License Rules Could be Aggregated

by Metacharacters with Regular Expressions?
Motivation: This question addresses the effect of using reg-

*2 https://github.com/freebsd/freebsd/tree/release/10.3.0
*3 https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.4.6.tar.xz
*4 http://ftp.riken.jp/pub/Linux/debian/debian-cd/7.8.0/source/iso-dvd/
*5 https://github.com/dmgerman/ninka/releases/tag/1.1

Table 5 Consolidating ratio using metacharacters.

Project # license rules # license rules Consolidation
Name before after Ratio
FB 475 457 3.8%
LI 286 269 5.9%
DE 440 419 4.8%

Table 6 Instance of license rules with metacharacters.

License License rule

FB RSA-MD

License( is also granted)? to( copy|
make) and use( this software is granted|
derivative work) provided[...]
RSA Data Security, Inc

LI GPL
the( terms of the)? GNU General
Public License

DE CeCILL-C

software( is governed by| under) the
( terms of the)? CeCILLC license
( under French law and
abiding| as circulated)[...]

ular expressions (C-1). Proposed approach aggregate license
rules corresponding to one license rule with metacharacter. If
metacharacters are used effectively, the number of license rules
will be reduced with keeping the accuracy.
Approach: To answer this research question, we evaluate the
effect of metacharacters with regular expressions for reducing the
number of license rules. The effect is represented as a consolida-
tion ratio defined as follows:

ConsolidationRatio =
RulesNum − RegexpRulesNum

RulesNum
(4)

where RulesNum means the number of license rules before con-
solidating with metacharacters and RegexpRulesNum means the
number of license rules after consolidating with metacharacters.
Result: Table 5 shows that the consolidation ratio for each
dataset. 3.8%, 5.9% and 4.8% of license rules in FreeBSD-10.3.0,
Linux-4.4.6 and Debian-7.8.0 respectively are consolidated. Ta-
ble 6 shows some instances of license rules with metacharacters.
The instance of RSA-MD (RSA-Message-Digest License) is ex-
tracted from FreeBSD-10.3.0 and the instance of GPL is extracted
from Linux-4.4.6 and the instance of CeCILL-C License is ex-
tracted from Debian-7.8.0. From these results, we can answer for
RQ1 as follows:

Answer to RQ1:� �
By using metacharacters of regular expressions to generate
license rules, we were able to aggregate 3.8% for FreeBSD-
10.3.0, 5.9% for Linux-4.4.6, and 4.8% for Debian-7.8.0.

� �
4.3.2 RQ2: Is the Number of License Rules Generated by

Our Approach Less than the AS–IS Method?
Motivation: This question addresses the prevention of the
generation of many license rules (C-2). The license generation

c© 2023 Information Processing Society of Japan 7
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Table 7 Number of generated rules.

Project #sentences Approach #generated rules

FB 9,435
Proposed Method 457
AS–IS 1,422

LI 8,661
Proposed Method 269
AS–IS 2,916

DE 9,807
Proposed Method 419
AS–IS 5,932

method preferably generates a small number of license rules. The
more rules are generated, the greater the workload for the latter
task of naming the license rules by manual. In our approach, we
build license rules from frequently appearing license sentences to
prevent the generation of a large number of license rules.
Approach: We compare the number of license rules generated
by our method to the number of license rules when license state-
ments are added to a license identification tool as is. We call a
method for adding license statements as license rules as the AS–
IS method. AS–IS is the simplest way to create a license rule,
break down a license statement into sentence units and eliminat-
ing duplication.
Result: Table 7 shows the number of rules generated by the pro-
posed method and AS–IS. The number of license rules generated
for FreeBSD-10.3.0 is 457 by the proposed method and 1,422 by
AS–IS, and for Linux-4.4.6 the proposed method is 269 and AS–
IS is 2,916. This indicates FreeBSD-10.3.0 and Linux-4.4.6 have
many duplicate license statements. For Debian-7.8.0, AS–IS gen-
erated 5,932 license rules while the proposed method generated
419. This means that Debian-7.8.0 has fewer overlapping license
statements (5,932/9,807) compared to other two projects but our
method successfully reduce the number of generated license rules
for Debian-7.8.0. From these results, we can answer for RQ2 as
follows:

Answer to RQ2:� �
The number of license rules generated by the proposed
method was 457 for FreeBSD-10.3.0, 269 for Linux-4.4.6,
and 419 for Debian-7.8.0, indicating that the proposed
method generates fewer license rules than AS–IS method.
In addition, compared to AS–IS, the proposed method is less
sensitive to the duplication of license sentences.

� �
4.3.3 RQ3: Does Our Approach Generate Licensing Rules

with better Performance than the AS–IS Method?
Motivation: In Section 2.3, we discussed the importance of not
generating a large number of license rules. At the same time,
identifying a larger number of license statements is important
for supporting the license identification process. In this research
question, we address the performance of license rules generated
by the proposed method from the two factors in the trade-off re-
lationship.
Approach: The license rules generated by the proposed method
and the AS–IS method are respectively combined with default
rules of Ninka and matched with the license sentences in each
dataset used for the rule generation. We evaluate the increase in
the number of matched license sentences by adding the generated
license rules by our method and the AS–IS method.

Fig. 5 The number of license rules used to identify OSS licenses and the
number of matched license sentences.

ER = 1 − # rules f or sentence matching
# matched sentences

(5)

MR =
# matched sentences
#license sentences

(6)

PR =
2 ∗ ER ∗ MR

ER + MR
(7)

We define the following metrics and evaluate the harmonic
mean of the two factors for each method. The Efficiency of Rules
(ER), shown in Eq. (5), is the normalized proportion of license
sentences that the rules match. The higher the ER value, the fewer
the rules that are generated. The Matching Rate (MR), shown in
Eq. (6), is the percentage of matched license sentences in the total.
The higher the MR value, the more license sentences are matched.
The Performance of Rules (PR), shown in Eq. (7), represents the
harmonic mean of the trade-off ER and MR values. We calculate
the PR value and evaluate whether the proposed method is higher
than the AS–IS or not. The performance of the default rules of
Ninka (Default) is also included for comparison. Ninka already
has 551 license rules by default.
Result: Figure 5 shows the number of license rules used to
identify OSS licenses and the number of matched license sen-
tences. 551 Default rules in Ninka matched 6,376 (67.6%), 5,309
(61.2%) and 4,357 (44.4%) license sentences in FreeBSD-10.3.0,
Linux-4.4.6 and Debian-7.8.0 respectively. We found that the
proposed method matched 8,281 (87.8%), 5,796 (66.9%), 5,191
(52.9%) license sentences in FreeBSD-10.3.0, Linux-4.4.6 and
Debian-7.8.0 respectively. On the other hand, we also found that
the AS–IS method matched a larger number of license sentences
than our method while it also requires a much greater number of
license rules than our method.

Table 8 shows the number of rules when matching license sen-
tences and ER, MR, and PR values calculated from the matched
license sentences.

The ER value of Default was 0.91 for Free-BSD-10.3.0, 0.90
for Linux-4.4.6, and 0.87 for Debian-7.8.0, the highest among all
methods. This indicates that the default license rules in Ninka,
which were created manually, are the rules that match more li-
cense sentences.

The MR value of AS–IS was 1.00 for all projects, therefore, the
AS–IS is the highest of MR value among all methods, since AS–
IS method used all sentences including unknown license state-
ments “as-is”. The MR values of our method were better than

c© 2023 Information Processing Society of Japan 8



Journal of Information Processing Vol.31 2–12 (Jan. 2023)

Table 8 Performance of generated rules.

Project Approach #rules #matched sentences ER MR PR

FreeBSD-10.3.0
Default 551 6,376 0.91 0.68 0.78
Proposed Method 1,008 8,281 0.88 0.88 0.88
AS–IS 1,973 9,435 0.79 1.00 0.88

Linux-4.4.6
Default 551 5,309 0.90 0.61 0.73
Proposed Method 820 5,796 0.86 0.67 0.75
AS–IS 3,467 8,661 0.60 1.00 0.75

Debian-7.8.0
Default 551 4,357 0.87 0.44 0.59
Proposed Method 970 5,191 0.81 0.53 0.64
AS–IS 6,483 9,807 0.34 1.00 0.51

the Default method. This indicates that generating and adding li-
cense rules increases the number of license sentences that can be
identified.

The PR value of Default was 0.78 for Free-BSD-10.3.0, 0.73
for Linux-4.4.6, and 0.59 for Debian-7.8.0. The PR value of
AS–IS was 0.88 for Free-BSD-10.3.0, 0.75 for Linux-4.4.6, and
0.51 for Debian-7.8.0. In AS–IS, the PR value of Debian-7.8.0
is lower than Default, which indicates that AS–IS method is a
performance degrading method for Debian Debian-7.8.0. On the
other hand, the PR value of our method was the same as AS–
IS for FreeBSD-10.3.0 and Linux-4.4.6, and 0.64 for Debian-
7.8.0 which is higher than Default and AS–IS. Therefore, the
proposed method is the most dominant method in terms of rule
performance. From these results, we can answer RQ3 as given
below.

Answer to RQ3:� �
The PR values indicating the performance of the license
rules generated by the proposed method were 0.88 for
FreeBSD-10.3.0, 0.75 for Linux-4.4.6, and 0.64 for Debian-
7.8.0, which were higher than AS–IS and Default. The per-
formance was the highest among all methods.

� �
5. Discussion

5.1 Improving the Consolidation Rate of License Rules
In RQ1, we evaluated the consolidation of orthographical vari-

ants in license statements for Technical Challenges (C-1). We
found that we were able to extract license rules with metacharac-
ters of regular expressions such as RSA-MD license and CeCILL-
C license as shown in Table 6. However, the consolidation rate
was not very high.

As an additional study, we counted the metacharacters in 551
license rules which were manually created and included in Ninka.
and investigated the consolidation ratio of the default license rules
included in Ninka. We calculated the consolidation rate for the li-
cense rules in Ninka and found that at least 133 metacharacters
are used in Ninka’s license rules with the consolidation ratio of
19.4%. The reason why the results of the consolidation ratio with
our method is only a few % is because the threshold for filtering
our outliers as described in Section 3.2 is set high (94%).

Furthermore, we inspected the license rules generated in RQ1
and found that many license rules including license statements
with orthographical variants were eliminated by filtering out out-
liers from each cluster.

The number of filtered license statements was 205 for
FreeBSD-10.3.0, 1,150 for Linux-4.4.6, and 1,869 for Debian-

7.8.0. We found two reasons of the elimination: one is that Ninka
extracts not only license statements but also other texts such as
explanations of applications and another is that Ninka has some
rules including frequently-used words such as “copy” and “mod-
ified”, which can lead to erroneously extract source code com-
ments. In future work, we will need to review words appearing
in explanations of applications and source code and refine the
set of license-related words used in Ninka. However, in order to
exclude very similar but different license statements, it is basi-
cally necessary to set the filtering threshold higher. Since an ex-
pert needs to determine whether the legal meaning of such slight
differences is actually different or not, we can expect some im-
provements but it would be difficult to make the consolidation
rate equal to that of Ninka’s. license rules.

5.2 Efficiency of Manual License Rule Creation
In RQ2 and RQ3, we evaluated the performance of the auto-

matically generated license rules for Technical Challenges (C-
2). In RQ2, we evaluated the number of generated license
rules and found that the number of license rules of the proposed
method is less when compared to AS–IS. In addition, the AS–
IS method generated a much larger number of license rules for
the Debian-7.8.0 dataset, which contains many licenses, com-
pared to FreeBSD-10.3.0 and Linux-4.4.6, while the proposed
method generated almost the same number of license rules as
other projects. The reason for this is that the proposed method
generates license rules based on frequent expressions patterns,
and therefore, our method does not generated so many license
rules. Even on a dataset with a large number of license types and
a small number of overlapping license statements such as Debian-
7.8.0, our method is able to output a stable number of license
rules. Therefore, this property is desirable in terms of performing
continuous maintenance of the license rules, since there is less
subsequent manual work involved in naming the rules.

From a practical standpoint, we believe that the number of rules
generated by our method will contribute to the continuous main-
tenance of the license rules. Ministry of Economy, Trade and In-
dustry (METI) in Japan reports *6 that it takes about ten minutes
to identify a single license. For 457 rules for FreeBSD-10.3.0 in
RQ2, it would take 76.1 hours with our method (cf. 237 hours
with AS–IS). This means our method works in a feasible range if
the tasks of visual inspection and naming of license statements are

*6 Ministry of Economy, Trade and Industry (METI), Direction of the Task
Force on Software Management Methods to Ensure Cyber-Physical Se-
curity, p.29, March, 2022.
https://www.meti.go.jp/shingikai/mono info service/sangyo cyber/wg
seido/wg bunyaodan/software/pdf/006 03 00.pdf
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performed by multiple persons. Our case study was conducted in
the domain of operating systems as a large-scale OSS. It indicates
that our method could provide a value not only to developers who
produce small applications using OSS but also to manufacturers
who use Linux as an embedded OS.

In RQ3, we evaluated the performance of the license rules. We
found that adding the license rules generated by our method to
Ninka improved the performance of the Default license rules. In
addition, the performance of our method is comparable or bet-
ter than the AS–IS method. Since our method contributes to to
adding fewer license sentences to Ninka, less effort is required to
name the rules. Therefore, even if the PR value is the same as that
of AS–IS, our method with the superior ER value is more useful
in improving the overall efficiency of the license rule creation pro-
cess. We also compare the results with Ninka’s default licensing
rules. The ER value of our method is lower compared to Default.
This indicates that Default licensing rules created manually are
more efficient. The Default license rule of Ninka is written by
developers who are knowledgable about orthographical variants
in license statements.

The MR value for FreeBSD-10.3.0, Linux-4.6.0, and Debian-
7.80 were 0.88, 0.67, and 0.53, respectively, indicating the degree
to which they can actually support the identification of unknown
licenses. Since 88% of the unknown licenses were matched for
FreeBSD-10.3.0, we believe it is sufficient to identify unknown
licenses. However, for the other two projects, the generated rules
matched less than 70% of the license statements (i.e., more than
30% of the unknown licenses still remain to be identified). This
suggests that there is room for improvement. In the future, we
will need to generalize known orthographical variants to improve
the ER value of our method.

5.3 Threats to Validity
5.3.1 Internal Validity

In this paper we conducted a case study to evaluate the auto-
mated license rule extraction approach. This approach heavily de-
pends on results from the hierarchal clustering method proposed
in our previous study [3]. Since the clustering method still has
room for improvement, the enhanced clustering method in the fu-
ture might change the result of our case study in the paper.

Furthermore, our approach in this paper relies on the three
kinds of thresholds described in Section 4.2: (1) maximum sim-
ilarity for removing license statements, (2) minimum support for
BIDE and (3) minimum length of license statement patterns. Al-
though the result of our case study might change depending on
these thresholds, we believe that we have at least set the best
thresholds for our dataset.
5.3.2 External Validity

Including our previous study, we tested our approach only
with the datasets from the three OSS products: FreeBSD-10.3.0，
Linux-4.4.6，and Debian-7.8.0. Although these are representa-
tive examples of very popular and large-scale OSS, we have no
data for other OSS products. We plan to replicate the case study
in this paper for other OSS products to improve the generality of
using our approach.

In this paper, in order to prepare the ground truth, we man-

ually identified the license names of unknown licenses detected
by Ninka from FreeBSD-10.3.0, Linux-4.4.6, and Debian-7.8.0.
The ground truth was created by the authors who are industrial
practitioners and academic researchers. Since they are neither
lawyers nor practitioners engaged in legal practices, the quality
of the ground truth might depends on authors’ interpretations of
license statements. We will need to work with legal experts in
the future to ensure the generality in creating the ground truth for
rigidly evaluating our approach.

6. Related Work

6.1 License Identification Tools
There are many license identification tools presented in exist-

ing work. These tools are categorized into similarity-based ap-
proaches and a regular expression–based approaches. Similarity-
based approaches are FOSSology [8] and OSLC [5]. FOSSol-
ogy uses bSAM algorithm originally used in matching patterns
among base sequences of proteins. This approach does not re-
quire so many license rules for variations of license statements
because this tool finds similar license rules for the target license
statements. This leads to high recall but the tool is very slow.
German et al. [1] reports that FOSSology require 923 seconds for
250 files although Ninka require only 22 seconds. On the other
hand, the examples of regular expression–based approaches are
Ohcount [6], OSLC [5] and ASLA [7]. These approaches achieve
high precision because rules written in regular expressions make
it easier to distinguish one license from another. However, the
performance of this approach depends on the quantity and qual-
ity of license rules. German et al. [1] reported that Ohcount [6]
and OSLC [5] sometimes fail to identify licenses because of sim-
ple regular expressions. For example, “This file is not licensed
under the GPL” is erroneously identified as GPL. In this study,
we focused on Ninka, a regular expression–based approach, to
achieve high precision and quick identification.

Some license identification tools do not address source files but
other format files. Di Penta et al. [11] proposed a license identi-
fication approach for jar archives. Hemel et al. [12] deal with
binary files. These approaches are based on the license identifi-
cation tool for source files such as Ninka. Our approach also can
improve these approaches.

6.2 License Violation Detection
The license identification is a fundamental technology for de-

tecting license violations. Mlouki et al. [13] proposed a license
violation detection approach for the Android ecosystem. They
analyzed 857 Android applications and found license violations
in 17 of them. In addition, seven applications have not removed
the license violations yet. Lokhamn et al. [14] proposed a tool
to detect license conflicts on software architectures. Alspaugh
et al. [15] proposed a model for representing a license and de-
tecting license conflicts based on the model. This model repre-
sents rights and obligations of a license as a tuple. This tuple
consists of Actor, Modality, Action, Object, and reference to the
other licenses. German et al. [16] proposed patterns to resolve
license conflicts. German et al. [17] also proposed an approach
to analyze incompatibilities between licenses of software pack-
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ages specified by meta-data in the package and licenses of source
files. Di Penta et al. [18] proposed an approach to find license
violations automatically from software development history. Our
approach enhances existing license identification approaches.

6.3 OSS License and Software Development
Several existing studies report that OSS license has an impact

on software developments. Kashima et al. [19] studied what li-
censes of source files have impact on software reuse by copy and
paste. Colazo et al. [20] studied the relations between OSS li-
censes and project activities. They state that the quantity of code
and OSS project continuity following copy left licenses such as
GPL is higher or larger, and development time is shorter than
them of OSS projects following non copy left licenses. Sojer
et al. [21] conducted an interview with software developers on
software reuse. The result showed that their knowledge on soft-
ware licenses is insufficinet. Almeida et al. [4] interviewed soft-
ware developers about OSS licenses. They found that develop-
ers have a good understanding of popular licenses but have only
a limited understanding when they need to deal with multiple
open source licenses. Meloca et al. [22] investigated the impact
of non-OSI-approved licenses on software projects from 657,000
open-source projects. Vendome et al. [23] conducted a study to
find when and how software developers decide an OSS license.
Vendome et al. [24] analyzed 1,200 license reported in the bug
tracking system.

These studies show the importance of analyses on the use of
the software license to understand software development. Our
work also contributes to the progress of these analyses.

7. Conclusion and Future Work

In this study, we propose a method for generating license rules
(e.g., regular expressions) that identify license statements from
clusters of unknown license statements. Our method firstly ap-
plies filtering to each cluster of license statements, followed by
sequential pattern mining, and convert the extracted patterns into
license rules. In addition, it uses metacharacters of regular ex-
pressions to aggregate multiple license rules into a single license
rule. To evaluate the proposed method, a case study was con-
ducted using 1,821, 3,561, and 2,838 unknown license statements
detected from FreeBSD-10.3.0, Linux-4.4.6, and Debian-7.8.0.
The results showed that the proposed method identifies more li-
censes with a minimum number of license rules, and that adding
license rules created by the proposed method to Ninka improves
the performance of the license rules. Future work includes re-
viewing keywords used in Ninka for license statements extrac-
tion, and generalizing orthographical variants.
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