
VOL. E103-D NO. 2
FEBRUARY 2020

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

348
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

PAPER

A Release-Aware Bug Triaging Method Considering Developers’
Bug-Fixing Loads

Yutaro KASHIWA†a), Nonmember and Masao OHIRA††b), Member

SUMMARY This paper proposes a release-aware bug triaging method
that aims to increase the number of bugs that developers can fix by the
next release date during open-source software development. A variety of
methods have been proposed for recommending appropriate developers for
particular bug-fixing tasks, but since these approaches only consider the
developers’ ability to fix the bug, they tend to assign many of the bugs
to a small number of the project’s developers. Since projects generally
have a release schedule, even excellent developers cannot fix all the bugs
that are assigned to them by the existing methods. The proposed method
places an upper limit on the number of tasks which are assigned to each
developer during a given period, in addition to considering the ability of
developers. Our method regards the bug assignment problem as a multiple
knapsack problem, finding the best combination of bugs and developers.
The best combination is one that maximizes the efficiency of the project,
while meeting the constraint where it can only assign as many bugs as the
developers can fix during a given period. We conduct the case study, ap-
plying our method to bug reports from Mozilla Firefox, Eclipse Platform
and GNU compiler collection (GCC). We find that our method has the fol-
lowing properties: (1) it can prevent the bug-fixing load from being con-
centrated on a small number of developers; (2) compared with the existing
methods, the proposed method can assign a more appropriate amount of
bugs that each developer can fix by the next release date; (3) it can reduce
the time taken to fix bugs by 35%–41%, compared with manual bug triag-
ing;
key words: bug triage, optimization, project management, repository min-
ing, machine learning

1. Introduction

Modern software systems are used for a variety of purposes
in a wide range of scenarios, and they are closely intercon-
nected. Increasing numbers of new features improve con-
venience for users but also mean that development has be-
come a more large-scale and more complicated process. In
developing large-scale and complicated systems, a signif-
icant number of bugs are detected during testing because
the developers cannot comprehend such large code bases in
their entirety [1], [2]. Many system development processes
use bug tracking systems such as Bugzilla [3] or Jira [4] to
record how to reproduce and fix bugs in detail. The process
of determining the importance and priority of each reported
bug, and then assigning a developer to fix it is called bug

Manuscript received June 5, 2019.
Manuscript revised September 18, 2019.
Manuscript publicized October 25, 2019.
†The author is with Graduate School of Systems Engineering,

Wakayama University, Wakayama-shi, 640–8510 Japan.
††The author is with the Faculty of Systems Engineering,

Wakayama University, Wakayama-shi, 640–8510 Japan.
a) E-mail: kashiwa.yutaro@g.wakayama-u.jp
b) E-mail: masao@wakayama-u.ac.jp

DOI: 10.1587/transinf.2019EDP7152

triage [5].
When there are a large number of reported bugs and

project developers in the test phase, understanding aspects
such as what skills each developer has and how many bugs
each developer is currently addressing is difficult. This
would lead that not all bugs are properly triaged. In fact,
The limitations of manual bug triage are well-known. In
Eclipse Platform and Mozilla Firefox, about 40% of bugs
are reassigned for fixing [6]. Reassignments should be pre-
vented as much as possible because reassignments do not
only waste human resources but also delay the fixing of the
bug. Therefore, supporting bug triage have been actively
studied [6]–[17] for a decade.

Most of the proposed methods have aimed to reduce re-
assignments by recommending developers who can reliably
and quickly fix individual newly-reported bugs, based on
previously-reported bugs and their bug-fixing history. How-
ever, they possibly concentrate their assignments on a small
number of particular developers because the number of past
bug fixes differ depending on the developer which makes the
training data for each developer imbalanced. Since software
development is generally tied to release dates, the number
of bugs that can be fixed by even experienced developers
before each release is limited. Therefore, the concentration
on the specific developers may reduce the number of bugs
that the developers can fix by the next release date.

In this research, we propose a Release-Aware Bug-
Triaging method (RABT) for the test phase, which consid-
ers the bug-fixing loads placed on developers, to increase
the number of bugfixes by the next release date. We regard
the bug assignment problem as a combination problem be-
tween bugs and developers and we formulate it as a multiple
knapsack problem to find the optimal combinations. We op-
timize the assignment process by finding bug assignments
that satisfy certain constraints, aiming to (1) mitigate the
task concentration problem caused by existing methods and
(2) assign the appropriate amount of bugs to fix more bugs
by the next release date.

Paper Organization: The rest of this paper is organized
as follows. Section 2 describes problems with existing bug
triage methods and our key idea for addressing them. Our
method is introduced in Sect. 3, and its implementation is
described in Sect. 4. Sections 5 and 6 present our experi-
ments and results, respectively. We discuss the results in
Sect. 7. Finally, Sect. 8 concludes this paper.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

KASHIWA and OHIRA: A RELEASE-AWARE BUG TRIAGING METHOD CONSIDERING DEVELOPERS’ BUG-FIXING LOADS
349

2. Bug Triage

2.1 Role of Bug Triage in the Bug-Fixing Process

When a user (or developer) finds a bug, they report it to the
project’s bug tracking system (BTS), which manages bug in-
formation. Corporating with the co-developers, the project’s
main developers who are called dispatchers investigate the
bug and identify its cause. The dispatchers then determine
whether the bug should be fixed, and if so, they prioritize it.
Then, the dispatchers find developers who are available and
are suitable for the job. All of these activities that are per-
formed by the dispatchers are necessary for bug triage. In
particular, the choice of the developer assigned to each bug
affects the bug-fixing time. Ways to support such decision-
making are therefore studied in the field of mining software
repositories. In this paper, we use “bug triage” in the narrow
sense of deciding the developer to which a given bug should
be assigned.

2.2 Manual Bug Triage and Its Problems

Dispatchers need to select an appropriate developer who
should be assigned to a bug. In many cases, however, the se-
lected developer cannot fix the bug, and the dispatchers must
assign it to another developer instead (herein, known as re-
assignment). The reassignment process continues until the
bug is finally fixed and leads to delay in the process of bug
fixing [6], [15]. In fact, in the Eclipse Platform and Mozilla
Firefox projects, reassignments are required for about 40%
of bugs, increasing the average bug-fixing time by about 50
days per reassignment [6], [15]. Proper assignments are not
easy because of the following reasons.

2.2.1 Identifying the Skills Needed to Fix a Bug is Diffi-
cult

Bugs reported to software developers range from ones that
must be urgently fixed, such as security vulnerabilities, to
less urgent ones such as usability improvement. Even for the
same type of bug, fixing it can require advanced technical
skills and expertise.

The dispatchers must check the bug’s type and diffi-
culty level and identify an appropriate developer for each
of a large number of reported bugs every day. If the as-
signed developer does not have the skills needed to fix
the bug, reassignment is required. To prevent this, time
should be taken to check the developers’ skills and expe-
rience. However, since dispatchers are often involved in, for
example, bug-fixing and developing new features as well
as assigning tasks, finding time to fully investigate bugs
and comprehend the developers’ skills and experience can
be difficult. Previous studies have proposed methods to
predict developers’ skills needed to fix given bugs [18]–
[21] and to recommend developers qualified to fix given
bugs [5], [13], [16], [22], [23].

2.2.2 Understanding the Load on Each Developer is Diffi-
cult

Large projects involve many developers, who live all around
the world. Since understanding each developer’s bug-fixing
workload can be difficult for dispatchers, particularly in dis-
tributed development, the dispatchers inevitably assign large
numbers of tasks to particular developers, putting heavy
loads on them. In fact, when we asked the most signifi-
cant contributors in Eclipse Platform and Mozilla Firefox
(the top 10 developers in each project who had previously
fixed bugs) whether they felt overloaded with bug-fixing ac-
tivities, four of the obtained five responses denoted that they
“always” or “sometimes” felt overloaded.

Such assigning large numbers of tasks to certain devel-
opers may causes reassignments which delays the bugs from
being fixed [24]. Attempting to triage bugs without consid-
ering each developer’s bug-fixing workload does not only
impose a burden on the developers but also mean that bugs
are left unaddressed for long periods of time. Despite this,
no bug triage methods have yet been proposed to consider
the developer’s workload for the bug-fixing tasks assigned
to each developer.

2.3 Overview of Existing Methods

As discussed above, reassignment is a significant waste
of resources and delays the process of bug fixing. The
lengthy bug-fixing times caused by reassignment must
be urgently addressed in large-scale open-source software
(OSS) projects, and many methods for supporting bug triage
have been proposed [5]–[17]. These methods are mainly
classified into content-based recommendation [5]–[15] or
cost-aware recommendation [15]–[17], we give an overview
of representative approaches in each category in the follow-
ing sections.

2.3.1 Content-Based Recommendation

The purpose of content-based recommendation (CBR)
method [5] is to assign tasks to appropriate developers to
avoid frequent reassignments. First, they parse textual data
comprising titles and abstracts of fixed bug reports, not-
ing the frequency of particular words appear and extract-
ing the fixer of each bug. Next, they input this informa-
tion into a machine learning algorithm (Naive Bayes [25],
Support Vector Machine [26] or C4.5 [27]) and they obtain
a model for recommending developers for each bug. Using
this model, CBR can recommend developers who are capa-
ble of dealing with newly-reported bugs with relatively high
accuracy (about 70%–75%)†.

†Here, the correct answers are considered to be the assign-
ments made by a developer with experience in bug assignment

350
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

2.3.2 Cost-Aware Recommendation (CosTriage)

The purpose of cost-aware recommendation is to reduce
time for fixing bugs. Park et al. have proposed CosTriage
which aims to assign tasks to developers who can quickly
fix the bugs while keeping the accuracy as much as that of
CBR [16]. First, as with CBR, it determines the probabil-
ity that each developer is appropriate for the bug. Then, it
calculates the time required to fix the bug. Next, it requires
the balance of how much accuracy of assignments is impor-
tant compared to the quickness of bug-fixing (accuracy =
1 - quickness). Finally, based on the assessment, it recom-
mends the most appropriate developer for the bug. Although
this reduced recommendation accuracy by about 5% com-
pared with CBR, the average bug-fixing time is reduced by
7%-31%.

2.4 Problems with Existing Methods

The existing methods have advantages of being able to
recommend appropriate developers or shortening the bug-
fixing time. However, as we have already discussed, they
do not consider how many bugs a developer can address
in a given period of time, and they may assign even mi-
nor bugs to experienced developers. As a result, they may
assign more tasks to some experienced developers than the
developers can reasonably address in the available time. In
the case that the methods are used in the test phase, they
decrease the number of bugs that developers can fix by the
next release.

To solve the problems in the existing methods, we pre-
viously proposed the method which considers developers’
load in order to reduce bug-fixing time throughout the soft-
ware development [28] (Note that this paper is written in
Japanese). We confirmed the previous method reduces bug-
fixing time, but we still have not evaluated how much bug-
fixes (in the test phase) the methods would increase by the
next release. This is because the previous method was de-
signed for the bug-fixing throughout software development.

Moreover, the method ignores the contents of the
symptoms described in the bug reports. To select an appro-
priate developer for the reported bug, the method measures
the bug fixing experience based on the count of bug-fixes
relating the component described in the reported bug. Gen-
erally speaking, dispatchers assign the bugs based on the
contents of the bug reports. Hence, the count-based method
is far from the bug-triaging activity (We have not compared
the method with the existing methods in terms of accuracy
of assignments in [28]).

In this study, we extend the previous method and re-
place the count-based recommendation into content-based
recommendation used in the existing methods (CBR and
CosTriage). For the evaluation, we evaluate the method with
the number of fixed bugs by the next release date and the ac-
curacy of assignments, in addition to the fixing-time.

3. Bug Triage as a Multiple Knapsack Problem

3.1 Multiple Knapsack Problem

The multiple knapsack problem [29], [30] is an optimiza-
tion problem that involves finding the best combinations of
items (with certain weights and values) to put in a series
of knapsacks. Here, each knapsack has a maximum weight
that it can carry. Figure 1 gives an overview of the multi-
ple knapsack problem, which extends the well-known knap-
sack problem to multiple knapsacks. In addition to deciding
whether or not to put an item in the knapsack, it requires us
to decide what items to put into each knapsack, significantly
increasing the computation required. The multiple knapsack
problem can be formulated as follows.

Maximize :
m∑

i=1

n∑

j=1

v j xi j (1)

S ub ject to :
n∑

j=1

w j xi j ≤ ci (i = 1, 2, . . . ,m) (2)

m∑

i=1

xi j ≤ 1 (j = 1, 2, . . . , n) (3)

xi j ∈ {0, 1} (j = 1, 2, . . . , n) (4)

Here, v j and w j represent the value and weight of the j-th
item, respectively, whereas xi j is the objective variable, rep-
resenting whether (1) or not (0) to put the j-th item into the
i-th knapsack. Expression (1) is the objective function and
is used to determine whether one combination of objective
variable values is better than the other and in this case aims
to maximize the total value of the selected items. In con-
trast, Expression (2) is a constraint that denotes that the to-
tal weight placed in the i-th knapsack must be less than the
maximum weight it can carry(ci), and Expression (3) pre-
vents any item being placed in more than one knapsack. Ex-
pression (4) denotes the constraint that the xi j should only
take values of 0 (not selected) or 1 (selected), i.e., should
represent whether the i-th knapsack contains item j.

The purpose of the multiple knapsack problem is to
find combinations of xi j values that maximize the value of
Expression (1) under the constraints Expressions (2), (3),
and (4), which can be reduced easily with a solver such as
lp solve [31]

Fig. 1 Overview of the multiple knapsack problem

KASHIWA and OHIRA: A RELEASE-AWARE BUG TRIAGING METHOD CONSIDERING DEVELOPERS’ BUG-FIXING LOADS
351

Table 1 List of terms used in this paper

Term Variable Meaning
Category k Bug category (classified by LDA).

Preference Pi j
Used to prioritize developers when assigning bug-fixing tasks. Pi j is the probability that developer Di is the
most appropriate for fixing bug Bj.

Cost Ci j
Time taken by developer Di to fix bug Bj, equal to the median time required by developer Di to fix a bug in
category k in the past.

Limitation L Prevents task concentration.

Available assignment time Ti
Time available for bug fixing within a given period. Ti is the amount of time developer Di has available:
Ti =LimitationL−∑n

j=1 Ci j ∗ xi j

3.2 Application of the Multiple Knapsack Problem to Bug
Triage

In this paper, we formulate bug triage as a multiple knapsack
problem and use its solution to optimize task assignments.
We obtain a combination of items (bugs) and knapsacks
(developers) that maximizes the objective (bug-fixing effi-
ciency for the whole project) under each knapsack’s weight
constraint (maximum time available to each developer or
limit). The weights are the costs of fixing the bugs (cost),
and the values are the developers’ suitabilities for each bug
(preference). The terms used in this paper are summarized
in Table 1.

Notably, the developers’ suitability (preferences) and
costs will differ depending on which developers are assigned
to which bugs. As a result, the variables in this problem are
different from those in the general multiple knapsack prob-
lem (we have switched from v j to Pi j and from w j to Ci j).

3.2.1 Preferences (Developer Suitabilities)

Here, the coefficients for the objective variables in the mul-
tiple knapsack problem’s objective function are the prefer-
ence P, indicating which developers should be preferred for
and can fix particular bug-fixing tasks.

The preference of developer Di for fixing bug Bj is de-
fined as the probability Pi j that developer Di is the most
appropriate for the task among all developers (i.e. the to-
tal of probability for each developers will be 1). The rea-
sons we adopt the probabilities are that, the ones are com-
monly used in bug assigning methods [5], [14], [16], [22],
they can take into account the contents in the descriptions
of bug reports, and statistically measure the appropriateness
of the task for developers. Although several studies weight
the scores according to priority or severity included in bug
reports [9], [32], the values of priority and severity are un-
reliable. Saha et al. reported that the levels of priority and
severity are not actual [33]. Thus, RABT does not utilize
the levels of priority and severity. To calculate the prob-
abilities, we use an Support Vector Machine (SVM) [26]
while there are numerous machine learning algorithms such
as Naive Bayes [25], C4.5 [27] and so forth. SVM offers
strong performance on unknown patterns (high generaliza-
tion ability) [26] and it would help RABT assign bug reports
including a wide variety of words. A prior study [5] has indi-
cated that SVMs are the most accurate for bug assingments.

Fig. 2 Preference calculation procedure

Figure 2 shows the preference calculation procedure, and
the steps are as follows.

Preparation phase

1. Collect data on fixed bugs from the BTS.
2. Retrieve the fixer and bug description (title and

overview) from the data.
3. Train the SVM using fixer/description pairs.

Assignment phase

1. When a new bug Bj is reported, input its description to
the previously-generated SVM to obtain the probabil-
ity (preference Pi j) that each developer Di suitable for
fixing it.

3.2.2 Bug-Fixing Cost

The time required to fix bugs depends on which develop-
ers are assigned to fix them. Here, the time required for
the developer Di to fix the bug-fixing task Bj is defined as
the bug-fixing cost Ci j. We use historical data to calcu-
late how long it took for developer Di to fix similar bugs Bj

and use this as the cost Ci j. In our previous work [28], in
order to calculate the approximate bug fixing-time for the
costs, we used priority and component tags. Both tags are
located in bug tracking systems, the priority tags show the
importance of the bug-fixing, and component tags indicate
the software parts (which constitute of the product) where
the bug appears in. We calculated the median time of bug-
fixing as costs by the levels of priority in each component.
However, in addition to the calculation of the preference, the
calculation of the costs do not use the contents of the bugs,
in other words, it ignores what bug it is. Depended on the
contents, the bug-fixing time will vary. For example, bugs

352
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Fig. 3 Procedure for calculating bug-fixing costs

related to security are fixed faster than bugs about perfor-
mance [34]. However, component tags do not include such
information and only the description contains the informa-
tion. Utilizing the descriptions, we use latent Dirichlet allo-
cation (LDA) [35], which is used in [16], to assess whether a
previous bug is of a type similar to the current bug Bj. Since
LDA is useful for finding similar documents, it is widely
used in the mining software repositories field [36]. The la-
tent semantic indexing (LSI) [37] and pLSI [38] methods are
similar to LDA, but LDA is different in that the words and
topics are assumed to follow a Dirichlet distribution. The
fact that it can handle words that were not in the training set
is also very useful, and we chose it due to the high proba-
bility of new words appearing in the free description part of
the input defect forms. Figure 3 shows the bug-fixing cost
calculation procedure, and the steps are as follows.

Preparation phase

1. Collect the bug-fixing data from the BTS.
2. Retrieve the fixer and bug description (title and

overview) from the data.
3. Input the free description part of the extracted data to

the LDA and categorize the bug (as category k).
4. Calculate the average time taken for each developer to

fix bugs in each category (called the cost list).

Assignment phase

1. When a new bug Bj is reported, input its description
to the previously-generated LDA and infer the bug’s
category.

2. Find the average time taken by developer Di to fix bugs
in category k from the cost list and use that as the bug-
fixing cost Ci j

3.2.3 Upper Limit

Naturally, the number of tasks developers can address in any
given period of time is limited. Thus, when assigning bug-
fixing tasks we consider the amount of time that developer
Di has available, i.e., the number of bugs they can fix. Fig-
ure 4 shows how the tasks are assigned. The number of tasks
that can be assigned is obtained from the available time slot
Ti, which is calculated from an upper limit L (per day) set

Fig. 4 Calculation of available time slot

in advance and the total cost Ci j already assigned to devel-
oper Di.

Ensuring that the total cost of the newly-assigned bug-
fixing tasks does not exceed Ti should have the effect of pre-
venting these tasks from concentrating on specific develop-
ers. The upper limit L can be changed in size depending on
the project. We set the same upper limit for all developers
in our experiments, but in practice, this upper limit is likely
to be different for each developer, in which case it can be set
as Li for developer Di.

3.3 Formulation

Here, we define the objective variables, objective function,
and constraints.

3.3.1 Objective Variable

The objective variables xi j represent whether our method
has assigned bug Bj to developer Di: if xi j = 1, then bug
Bj has been assigned to developer Di, and if xi j = 0, then it
has not.

xi j ∈ {0, 1} (5)

3.3.2 Objective Function

The objective is to maximize the total sum of the product
of the preferences and objective variables for each bug and
each developer. This means that our method finds the best
combination of tasks and developers for the project as a
whole and not for individual developers.

Maximize :
m∑

i=1

n∑

j=1

Pi jxi j (6)

3.3.3 Constraints

Our method imposes two constraints: one is to prevent tasks
from concentrating on a small number of experienced de-
velopers (Constraint 1), and the other is to avoid assigning a
bug to multiple developers (Constraint 2).

Constraint 1: The total cost of the tasks assigned to each
developer must not exceed their available time slots.

n∑

j=1

Ci jxi j ≤ Ti (i = 1, 2, . . . ,m) (7)

KASHIWA and OHIRA: A RELEASE-AWARE BUG TRIAGING METHOD CONSIDERING DEVELOPERS’ BUG-FIXING LOADS
353

Constraint 2: At most, one developer can be assigned to
each bug.

m∑

i=1

xi j ≤ 1 (j = 1, 2, . . . , n) (8)

4. Implementation

4.1 Overview of the Proposed Implementation

In this section, we give an overview of the proposed imple-
mentation, as shown in Fig. 5. First, we extract data about
fixed bugs from the repository and use them to train an SVM
and an LDA. Next, we obtain the cost list (the average time
each developer has taken to fix each category of bugs) using
the LDA.

When a new bug Bn is reported, we input its description
to the SVM and LDA to obtain the preferences Pin for all
developers and its category k. Then, we find the costs Cin for
all developers from the cost list using the category k. Finally,
we obtain each developer’s available time slots Ti based on
the (pre-determined) upper limit L and the total cost of the
bugs already assigned to them. We can then determine the
developer to be assigned based on the preferences Pi j, the
costs Ci j and the available time slots Ti.

4.2 Procedure for the Release-Aware Bug Triaging
Method (RABT)

Here, we describe how to use our method for daily bug as-
signment. The procedure is as follows.

Step 1: Set the parameters
Set the upper limit L in advance and initialize the available
time slots Ti for each developer to L.
Step 2: Construct the SVM and LDA
Construct the SVM and LDA to compute the preferences Pi j

and costs Ci j for each bug Bj and developer Di.
Step 3: Compute the preferences and costs
Calculate the preferences and costs for each newly reported
or unassigned bug.
Step 4: Increment Ti by n (days)
Add n (number of days from the last assignment date to this
assignment date) to each developer’s Ti (up to a maximum
of L). If it is the first assignment, this step will be skipped.

Fig. 5 Overview of the release-aware bug triaging method (RABT)

Step 5: Apply 0-1 application of integer programming
Assign these bugs to developers using the method described
in the previous section.
Step 6: Update Ti

Reduce the number of available time slots Ti for each devel-
oper by the cost of the bugs assigned in Step 4.
Step 7: Go to the next assignment day (to Step 2)
Once the next assignment day comes, proceed to Step 2.

Here, the value of n (> 0) depends on the task assignment
process and needs of each project and is difficult to uniquely
determine. In this paper, we assume that n is a natural num-
ber, arbitrarily decided by the method’s users, to keep the
discussion general.

5. Experimental Design

5.1 Overview and Aims

We prepare four evaluations to investigate whether RABT
could improve bug-fixing efficiency by assigning tasks to
appropriate developers and considering the time they had
available for bug-fixing. In Evaluation I, we make sure
whether RABT can prevent tasks being concentrated on cer-
tain developers, with comparing the existing methods. In
Evaluation II, comparing the existing methods, we confirm
that RABT can reduce the numbers of overdue bugs (which
are assigned but fixed after the release). In Evaluation III,
we compare manual assignment (actual bug-fixing time)
with the existing methods and RABT to see whether they
could reduce bug-fixing delays. In Evaluation IV, we check
whether the existing methods or RABT can assign bugs to
suitable developers and prevent reassignment, which is the
most significant cause of bug-fixing delays. Note that we
do not compare our previous work [28] with the proposed
work in this study and other existing works although this
evaluation might show the difference between our current
work and our previous work. This is because our previ-
ous method use components tag in the bug reports to assign
bugs, which is far from typical bug-triage methods. Most
of the bug-triaging studies use the description of the bugs to
assign bugs and use the components to measure whether the
assignment is appropriate. Basically, developers assign the
bugs after reading the description of bug reports rather than
component tags, therefore, using the description would be
more realistic.

5.2 Datasets

We conducted a case study on three large OSS projects
(Mozilla Firefox [39], the Eclipse Platform [40], and GNU
compiler collection (GCC) [41]). Each of these is a long-
established project, allowing us to acquire sufficient data
for the experiment. In addition, many previous stud-
ies [5], [6], [14]–[16], [22], [42]–[45] have analyzed data
from these projects, enabling us to validate the results ob-
tained in this case study.

354
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Table 2 Datasets

Project Dataset Date Period No. of bugs

Firefox
Training data Jul. 5, 2010 – Jul. 4, 2011 1 year 1,043
Testing data Jul. 5, 2011 – Sep. 27, 2011 12 weeks 142

Eclipse Platform
Training data Mar. 22, 2010 – Mar. 21, 2011 1 year 783
Testing data Mar. 22, 2011 – Jun. 22, 2011 3 months 168

GCC
Training data Dec. 25, 2009 – Dec. 24, 2010 1 year 940
Testing data Dec. 25, 2010 – Mar. 25, 2011 3 months 250

Table 3 Dataset contents after each filtering step

Firefox Eclipse Platform GCC
Filter

Training Testing Training Testing Training Testing
A Bugs collected from each project 14,915 2,254 3,503 847 4,191 1,173
B Of (A), fixed bugs with known fixing-times 1,769 238 1,121 250 1,324 377
C Of (B), bugs whose fixing-time is not an outlier value 1,568 211 946 202 1,116 320
D Of (C), bugs fixed by active developers 1,043 142 783 168 940 250

Table 4 Statistics of fixing-time for each dataset

Project Firefox Platform Gcc
of bugs 1,185 951 1,190

Percentage of bugs in which
19.2 49.2 51.2

the bug-fixing time is less than 2 days
average days to fix 12.5 6 4.4
median days to fix 7 2 1.9

minimum days to fix 1 1 1
maximal days to fix 59.9 38.5 27.5

Table 5 Active developers in each dataset

Projects # of all developers # of active developers
Firefox 215 19

Platform 61 20
Gcc 97 23

Table 2 outlines the datasets used, whereas Table 3 lists
the filtering performed to create them and the number of
bugs in each. Table 4 shows their statistics of bug-fixing
days. Of all the bugs collected from each project, we only
considered fixed bugs (i.e., bugs whose status was FIXED)
where the fixer and fixing time could be identified. Some of
the bugs were only fixed after several years, so we removed
these outliers by confirming the fixing time distributions us-
ing boxplots.

In this study, we assigned bug-fixing tasks to develop-
ers using existing methods and RABT. However, assigning
tasks to all of a project’s developers is not realistic because
OSS projects developers are often known to leave projects
in a relatively short period of time [46]. Moreover, since not
all developers actively fix bugs [43], tasks should necessar-
ily only be assigned to developers who are likely to be in
charge of bug-fixing tasks. Hence, we only assigned defined
tasks to developers who had fixed six or more bugs within
six months of their first assignment (i.e., fixed at least one
bug per month), thus considering these developers to be “ac-
tive” (Table 5). To guarantee the accuracy of task assign-
ment, all bug reports fixed by non-target developers were
excluded.

In this study, we prepared both learning and evalua-

tion datasets, using one year of data (from the first assign-
ment day) as training data for all projects, and 12 weeks of
data (Firefox) and three months of data (Eclipse and GCC)
before release as evaluation data. Only 12 weeks of Fire-
fox evaluation data was used because the Firefox project
has adopted a rapid release method [47] with a test period
of 12 weeks for each release. In contrast, three months of
evaluation data of Eclipse and GCC was used due to the
large number of bug reports filed in the three months before
release.

5.3 Comparison Methods

We compared the bug-fixing time of RABT with that of a
manual assignment method and two existing methods (CBR
and CosTriage). Among the machine learning algorithms
used for CBR and CosTriage, we used the SVM-based
method [5] that was found to give the most accurate recom-
mendations.

5.4 Evaluations

We evaluate RABT in four different ways as described be-
low.
Evaluation I: Prevention of task concentration
We confirm whether the number of tasks (bug-fixing time)
assigned to each developer by the existing methods and
RABT is higher for certain developers. Here, as an eval-
uation criterion, the bug-fixing time should not exceed the
evaluation data period for each project.
Evaluation II: Reducing overdue bugs for the release
We confirm the numbers of bugs that assigned but fixed after
the release (“# of overdue bugs”). Note that “# of overdue
bugs” is different from the task concentration in Evaluation
I, which shows the total time that developers devote fixing
bugs in the period. Therefore, even if the task concentration
did not happen in Evaluation I, if the bugs were assigned
immediately before the release, “# of overdue bugs” might
be more than zero.
Evaluation III: Reduction of overall bug-fixing time for

KASHIWA and OHIRA: A RELEASE-AWARE BUG TRIAGING METHOD CONSIDERING DEVELOPERS’ BUG-FIXING LOADS
355

the project
We confirm whether the existing methods or RABT can im-
prove bug-fixing efficiency by comparing their estimated
bug-fixing times with the actual recorded times.
Evaluation IV: Accuracy of assignments
We evaluate to what extent the accuracy of assignments
by RABT decreases compared to CBR. CBR assigns each
bug to the most suitable developer (with the largest pref-
erence), whereas RABT assigns bugs to developers so that
the total preferences for the project are the highest. Hence,
we can assume that RABT will lower the accuracy of the
assignment.

The accuracy of assignments measures a rate of the
number of appropriate assignments and the number of all as-
signments. The appropriate assignment is defined as an as-
signment to the developer who has experienced fixing bugs
with the same component as the target bug report. The com-
ponents are software parts constituting of the product. The
bug tracking systems in Eclipse, Firefox, and Gcc have the
tag indicating which component includes the bug.

Here, several works evaluate their methods with top-
X accuracy which is the performance measure how many
developers are correctly selected when recommending mul-
tiple developers for a bug. We cannot use this because our
bug assignments to developers are executed at the same time
and determined dynamically, that is, each assignment is de-
pendent on to whom each other’s bug is assigned.

5.5 Experimental Procedure

In this experiment, tasks were assigned using both the ex-
isting methods and RABT, and the bug-fixing times were
calculated based on the resulting assignments. An overview
of the experiment is shown in Fig. 6.

We extracted the bug reports for each date in the eval-
uation data and used both RABT and the existing methods
to assign the bugs day by day according to their reported
date. Also, the assigned bugs to each developer are consid-
ered to be fixed in the order of the assignments. Developers’
available time slots Ti will be incremented by one (Ti never
surpass upper limit L) before assigning bugs.

Once assignments had been made for all days, the bug-
fixing times were calculated (Fig. 6, right). Since the assign-
ment methods considered here do not always assign the bugs
to the developers who actually fixed them (i.e., the actual

Fig. 6 Overview of experiment

bug-fixing time cannot be calculated), we used the median
times taken by the individual developers to fix the bugs in
each category (that is, the costs Ci j) from the training data
as the bug-fixing times for the experiment.

5.5.1 Experimental Environment and Settings

Experimental environment: The open-source mathemati-
cal planning software package lp solve 5.5.2.0 was used to
solve the task assignment problem using 0-1 integer pro-
gramming method, operating on a PC with an Intel Xeon
2.20 GHz CPU and 64 GB of RAM and running CentOS 7.
Parameter settings: RABT requires the upper limit L and
the assignment interval (Sect. 4.2, Step 6, n) to be set in ad-
vance. Here, the third quartile value of the times required
to fix the bugs in the dataset was calculated and rounded, to
obtain L values of 15 for Firefox, 6 for the Eclipse Platform,
and 6 for GCC. In addition, the interval n was set to 1 (day).
While applying LDA, deciding how many bug categories to
use for classification was important, so we determined the
optimal number of categories for each project using Arun’s
method [48]. This yielded 7 for Firefox, 12 for the Eclipse
Platform, and 11 for GCC.
Experimental settings: The procedure of RABT includes
the recalculation process of preferences and costs (Step2).
However, if we use this recalculation in the evaluation, we
cannot compare the three methods under the same condi-
tion because the preference and cost gradually vary as the
simulation progresses. In order to prevent from changing
the cost and preference during the experiment, we return to
Step 3 rather than Step 2 after Step 7 in this experiment.

As in a previous study [16], the bug-fixing times for
prior bugs were obtained as follows.

fixing time = fix day − assignment day + 1 day (9)
*round down to the nearest decimal

The assignment date is the date when the bug was assigned
to the developer who fixed it. In other words, we do not
include the time spent by previous developers in attempting
to fix the bug (the reassignment time) here.

6. Result

6.1 Preliminary Experiment: Evaluation of a Method to
Calculate Bug-Fixing Time

To the best our knowledge, no software provides us with a
simulation of bug-fixing activity. In this experiment, we can
not time the bug-fixing time if tasks are assigned to devel-
opers other than the developer who actually fixed the bug.
This is the reason why costs are substituted as bug-fixing
time in this experiment. To use the cost as the bug-fixing
time, we confirm whether the cost can substitute as the bug-
fixing time in a preliminary experiment.

First, from the bug-fixing history, we prepare two kinds
of information (“who fixed which bugs” and “the fixing
time”). Using the former information (who fixed which

356
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Table 6 Evaluation of calculations for bug-fixing time

Actual Simulated
fixing day fixing day

delta delta per bug

Firefox 1,799 1,643 156 1.1
Platform 822 778 44 0.2

Gcc 1,148 992 156 0.6

Fig. 7 Fixing time by each developer

bugs) and cost, we calculate the simulation bug-fixing time.
Then, we compare the simulation bug-fixing time and the
actual bug-fixing time. As the difference between these two
fixing times is smaller, the calculation of the bug-fixing time
in this simulation is reasonable.

The results of the experiment are shown in the Table 6.
In Firefox 156 days (1.1 days per bug), Platform 44 days
(0.2 days), and Gcc 156 days (0.6 days) errors were seen.
The error per bug is about one day in Firefox or is less
than one day in Platform and Gcc, and can be said to be
acceptable.

6.2 Evaluation I: Mitigation of Task Concentration

Figure 7 shows the amount of task (the number of days to
fix) that each active developer worked on†. The number of
developers assigned tasks that require more than the evalu-
ation data period (Firefox: 12 weeks, Platform and Gcc: 3
months) by CBR, is eight developers in Firefox, one devel-
oper in Platform, four developers in Gcc. We can see a lot
of loads on some developers. Even when using CosTriage,
since the number of developers is seven developers in
Firefox, no developers in Platform, two developers in Gcc.
It shows Costriage mitigate the task concentration compared
with CBR, however, tasks are still concentrated on a few de-
velopers. In the case of applying RABT, the number of de-
veloper is four developers in Firefox, no developers in Plat-

†Note that the numbers on the horizontal axis represent the or-
der when the developer’s task amount (bug-fixing days) is arranged
in descending order for each method, therefore different developers
even if same axis numbers for each method.

Table 7 The statistics of fixing-time assigned by each method

Projects Firefox
Methods CBR CosTriage RABT

mean 97.0 96.7 52.5
median 63.6 63.6 46.9

max 407.9 407.9 92.1
min 0.0 0.0 0.0

variance 9393.3 9117.8 960.6
stdev 96.9 95.5 31.0

entropy 3.6 3.7 4.0

Projects Platform
Methods CBR CosTriage RABT

mean 46.8 44.8 27.0
median 48.9 43.3 28.0

max 98.6 87.9 51.9
min 0.0 0.0 0.0

variance 828.3 716.7 217.8
stdev 28.8 26.8 14.8

entropy 4.0 4.0 4.1

Projects Gcc
Methods CBR CosTriage RABT

mean 45.1 40.4 29.7
median 32.4 29.1 24.3

max 136.5 119.6 73.6
min 0.0 0.0 0.0

variance 1716.4 1167.7 552.4
stdev 41.4 34.2 23.5

entropy 3.9 4.0 4.1

form and Gcc. For all projects, the number of developers is
reduced compared with existing methods.

As for the bug-fixing times of the developers who con-
centrated tasks by RABT and the existing methods, it can be
seen that the bug-fixing time of the developer assigned by
RABT is significantly reduced (especially, the fixing-times
of developers assigned a lot of tasks by existing methods are
reduced).

Table 7 summarizes the statistics of the fixing-time that
each developer devotes to fixing bugs. The variance of the
fixing-time assigned by RABT is smaller than the others in
all projects and also entropy is larger, which show RABT
can mitigate the tasks more than the traditional methods do.

�

�

�

�

The existing methods tend to concentrate the task as-
signment on some developers. Compared with the ex-
isting methods, RABT can mitigate the task concen-
tration.

6.3 Evaluation II: Reducing Overdue Bugs for the Release

Table 8 shows the numbers of bugs that assigned but fixed
after the release (“# of overdue bugs”) and the numbers of
un-fixed bugs by the release which is the sum of “# of over-
due bugs” and “# of un-assigned bugs”.

In Firefox, 37 by the manual assignment method, 77
bugs by CBR, 75 bugs by CosTriage, and 31 bugs by RABT
were overdue. Next, in Platform, 53 by the manual assign-
ment method, 21 bugs by CBR, 20 bugs by CosTriage, 14
bugs by RABT. Finally, in Gcc, 64 by the manual assign-
ment method, 52 bugs by CBRs, 40 bugs by CosTriages

KASHIWA and OHIRA: A RELEASE-AWARE BUG TRIAGING METHOD CONSIDERING DEVELOPERS’ BUG-FIXING LOADS
357

Table 8 Comparing the results of each method

Projects Firefox
Methods Manual CBR CosTriage RABT

of assigned bugs 142 142 142 123
of un-assigned bugs 0 0 0 19

of assigned developers 15 17 17 18
of overdue bugs 37 77 75 31
of un-fixed bugs 37 77 75 50

Fixing-days for project 1,702 1,843 1,838 997
Avg. Fixing-days per bug 12.0 13.0 12.9 8.1
Accuracy of assignments — 81.7 81.0 60.6

Projects Platform
Methods Manual CBR CosTriage RABT

of assigned bugs 194 194 194 185
of un-assigned bugs 0 0 0 9

of assigned developers 19 19 19 19
of overdue bugs 53 21 20 14
of un-fixed bugs 53 21 20 23

Fixing-days for project 828 936 897 540
Avg. Fixing-days per bug 4.3 4.8 4.6 2.9
Accuracy of assignments — 68.0 68.0 60.3

Projects Gcc
Methods Manual CBR CosTriage RABT

of assigned bugs 250 250 250 246
of un-assigned bugs 0 0 0 4

of assigned developers 19 21 20 21
of overdue bugs 64 52 40 22
of un-fixed bugs 64 52 40 26

Fixing-days for project 1,085 1,037 929 684
Avg. Fixing-days per bug 4.3 4.1 3.7 2.8
Accuracy of assignments — 74.4 71.6 66.4

and 22 bugs by RABT. Overall, RABT can assign a more
appropriate amount of bugs to each developer compared to
the existing methods. Considering the un-assigned bugs, the
number of un-fixed bugs by RABT is more than CBR and
Costriage in Platform, but is fewer than CBR and Costriage
in Firefox and Gcc. We looked into the assigned date of
the overdue bugs and found that the overdue bugs by RABT
were reported and assigned just before release. For the exist-
ing methods, in addition to the reason, the task concentration
made overdue bugs.

�

�

�

	
Compared with CBR and CosTriage, RABT can as-
sign a more appropriate amount of bugs that each de-
veloper can fix by the immediate release.

6.4 Evaluation III: Reduction of Bug-Fixing Time

Table 8 shows the bug-fixing time of the project when us-
ing the manual assignment method, CBR, CosTriage and
RABT, respectively.

In Firefox, the total bug-fixing days for the project is
1,702 days in the manual assignment method, 1,843 days
in CBR, 1,838 days in Costriage, 997 days in RABT. CBR
increased about 8% (8% = (1,843 - 1,702) / 1,702) of the
days compared with the manual assignment method, Cos-
triage also raised about 7% (8% = (1,838 - 1702) / 1,702),
RABT could reduce about 41% (-41% = (997 - 1,702) /
1,702) compared to the manual assignment method. More-

over, RABT could reduce about 46% (-46% = (997 - 1,843)
/ 1,843) of the days compared to CBR, and about 46% (-46%
= (997 - 1,838 /1,838) compared to CosTriage.

In Platform, the total number of bug-fixing days for the
project is 828 days in the manual assignment method, 936
days in CBR, 897 days in Costriage, 540 days in RABT.
CBR increased about 13% (13% = (936 - 828) / 828) of the
days compared with the manual assignment method, Cos-
triage raised about 8% (8% = 897 - 828) / 828), RABT could
reduce the bug-fixing time of about 35% (-35% = 540 - 828)
/ 828) compared with the manual assignment method. In
addition, RABT could reduce the bug-fixing time of about
42% (-42% = (540 - 936) / 936) compared to CBR, while
RABT increased about 40% (-40% = (540 - 897) / 897) of
the days compared to CosTriage.

In Gcc, the total number of bug-fixing days for the
project is 1,085 days in the manual assignment method,
1,037 days in CBR, 929 days in Costriage, and 684 days in
RABT. CBR could reduce about 4% (-4% = (1,037 - 1,085)
/ 1,037), about 14% (-14% = (929 - 1,085) / 929), RABT
can reduce the bug-fixing time of about 37% (-37% = (684
- 1,085) / 684) compared to the manual assignment method.
In addition, RABT could reduce the bug-fixing time of about
34% (-34% = (684 - 1,037) / 684) compared with CBR,
while increased about 26% (-26% = (684 - 929) / 929) com-
pared to CosTriage.

From the above, RABT can reduce fixing-time less
than or equal to CosTriage, but considering the release,
RABT can improve bug-fixing activities for the project com-
pared to CosTriage.

�

�

Compared to the manual task assignment method,
RABT can reduce the bug-fixing time from 35% to
41%.

6.5 Evaluation IV: Accuracy of Assignments

Table 8 also shows the accuracy of assignments by CBR,
CosTriage and RABT, respectively. In Firefox, the accuracy
of assignments was 81.7% by CBR, 81.0% by CosTriage,
60.6% by RABT. Next, in Platform, CBR was 68.0%, Cos-
Triage was 68.0%, and RABT was 60.3%. Finally, in Gcc,
CBR was 74.4%, CosTriage was 71.6%, and RABT was
66.4%. Taking the average accuracy for each of the three
methods, CBR is 74.7%, the CosTriage is 73.5%, RABT
is 62.4%. In addition, the accuracy of CosTriage was 2%
lower than that of CBR, and the accuracy of RABT de-
creased by 20% compared to CBR.

�

�

�

�

Although RABT can reduce the bug-fixing time and
mitigate the concentration of tasks, it has been found
that the assignment accuracy decreases by 20% on av-
erage, compared to CBR.

358
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

7. Discussion

7.1 The Effect of Lowering Accuracy

Throughout the evaluations, we showed RABT outperforms
the existing methods in terms of mitigation of the task con-
centration, the number of bugs that developers can fix by
the next release, the total fixing-time for the project. How-
ever, in evaluation IV, we found RABT decreases 20% of the
accuracy of assignments, comparing with the existing meth-
ods. We concern the effect of lowering the accuracy which
induces the reassignments of the bugs. In the following sec-
tions, we discuss the cause and effect of the lowering 20%
of the accuracy.

7.1.1 The Cause of Lowering Accuracy

There are two conceivable reasons why the accuracy of
RABT is lower. The first case is when we still have the
other developers that have fixed a bug in the same compo-
nent (which would be a correct recommendation if methods
assign a bug to the developers). RABT would assign bugs
to the developers whose preference is not the largest. Thus,
in the case that the assignments are inaccurate even though
there are alternative developers, this suggests that the sec-
ond or the third (or so on) recommendations should be im-
proved. Since the number of fixes is considerably different
depending on developers, the sizes of the training dataset for
each developer also differ. In this experiment, we used the
dataset which contains one year of data. This is because the
dataset size becomes bigger, the more the existing methods
would concentrate bugs on specific developers, therefore we
avoid using plenty of the data to equally evaluate. If we use
more data, the second or third recommendations would be
improved.

Another case is when there is only one developer (there
are no alternative developers) in the component. In this case,
the preference of the developers that should be assigned by
RABT should be 100 (which is the maximum value of pref-
erence). To realize the value, we could train the model with
the component tags in addition to text data. Although the
component tags were used to evaluate the appropriateness
of the recommendations in this paper, we can exploit the
tags when applying RABT to the actual projects. For both
cases, improving the classifier would be an effective option.

7.1.2 Estimation of the Effect of Lowering Accuracy

In this section, in order to estimate the effect of inappro-
priate assignment, granted that the developer needs double
fixing-time when the assignment is not appropriate, we con-
firm how the results of evaluations vary.

As for Evaluation I, Fig. 8 and Table 9 show the bug-
fixing days and the statistics of the fixing-time that each de-
veloper devotes to fixing bugs, respectively. In the table,
Δ shows the difference between the original results and the

Fig. 8 Penalized fixing time by each developer

penalized results.
Looking into the penalized result of Firefox in Fig. 8,

the numbers of developers who devoted to bug-fixing over
the evaluation data period (Firefox: 12 weeks, Platform and
Gcc: 3 months) are eleven, eleven, and eight assigned by
CBR, CosTriage, and RABT, respectively. Compared with
the original results (the number of developers were eight,
seven, and four respectively), the increases were three, four,
and four developers respectively. In Platform, the num-
bers were eight, seven, and no developers assigned by CBR,
CosTriage, and RABT, respectively. Compared with the
original results (the number were one developer by CBR
and no developers by CBR and RABT), the increases were
seven, seven, and no developers. In Gcc, the numbers were
five, five, and no developers assigned by CBR, CosTriage,
and RABT, respectively. Compared with the original re-
sults (the number were four, two, and no developers, respec-
tively), the increases were one, three, and no developers.

Regarding the variance and entropy of the fixing-time
for each developer, in all project, the variance of RABT
is still smaller than CBR and CosTriage, and the entropy
of RABT is larger than CBR and CosTriage, which shows
RABT distribute the task more than CBR and CosTriage.
Overall, even if the project prepares doubled bug-fixing time
for each developer when the assignment is not appropriate,
the workloads by assigned by RABT are less affected.

As for Evaluation II and III, Table 10 shows the number
of overdue bugs and the fixing days when the fixing-time
whose assignments are inappropriate are doubled. Note that
the table does not include “# of assigned bugs”, “# of un-
assigned bugs”, “# of assigned developers”, and “Accuracy
of assignments” since they did not change from Table 8.

In terms of the number of overdue bugs, the numbers
are increased in all projects and methods. Compared with
the original results, the numbers in all project by RABT
were smaller than others whereas the increases of RABT
were larger than others in Firefox and Gcc.

In terms of the fixing-time, in all projects, the fixing-

KASHIWA and OHIRA: A RELEASE-AWARE BUG TRIAGING METHOD CONSIDERING DEVELOPERS’ BUG-FIXING LOADS
359

Table 9 The statistics of penalized fixing-time assigned by each method

Projects Firefox
Methods CBR CosTriage RABT

mean 117.5 117.6 67.7
Δ 20.5 20.9 15.2

median 99.4 99.2 65.3
Δ 35.8 35.6 18.4

max 422.7 422.7 144.8
Δ 14.8 14.8 52.7

min 0.0 0.0 0.0
Δ 0.0 0.0 0.0

variance 11575.2 11281.4 1745.5
Δ 2181.9 2163.6 784.9

stdev 107.6 106.2 41.8
Δ 10.7 10.7 10.8

entropy 3.7 3.7 3.9
Δ 0.1 0.0 -0.1

Projects Platform
Methods CBR CosTriage RABT

mean 68.6 65.0 40.6
Δ 21.8 20.2 13.6

median 62.8 62.8 42.8
Δ 13.9 19.5 14.8

max 147.2 127.8 71.5
Δ 48.6 39.9 19.6

min 0.0 0.0 0.0
Δ 0.0 0.0 0.0

variance 2104.5 1759.9 472.8
Δ 1276.2 1043.2 255

stdev 45.9 42.0 21.7
Δ 17.1 15.2 6.9

entropy 4.0 4.0 4.1
Δ 0.0 0.0 0.0

Projects Gcc
Methods CBR CosTriage RABT

mean 55.6 49.5 39.0
Δ 10.5 9.1 9.3

median 41.7 43.5 33.6
Δ 9.3 14.4 9.3

max 183.0 130.5 84.4
Δ 46.5 10.9 10.8

min 0.0 0.0 0.0
Δ 0.0 0.0 0.0

variance 2469.2 1477.2 770.2
Δ 752.8 309.5 217.8

stdev 49.7 38.4 27.8
Δ 8.3 4.2 4.3

entropy 4.0 4.0 4.1
Δ 0.1 0.0 0.0

Table 10 Comparing the penalized results of each method

Projects Firefox
Methods CBR CosTriage RABT

of overdue bugs 87 83 43
Δ 10 8 12

of un-fixed bugs 87 83 62
Δ 10 8 12

Fixing-days for project 2232 2235 1286
Δ 389 397 289

Avg. Fixing-days per bug 15.7 15.7 10.5
Δ 2.7 2.8 2.4

Projects Platform
Methods CBR CosTriage RABT

of overdue bugs 49 42 20
Δ 28 22 6

of un-fixed bugs 49 42 29
Δ 28 22 6

Fixing-days for project 1372 1301 812
Δ 436 404 272

Avg. Fixing-days per bug 7.1 6.7 4.4
Δ 2.8 1.9 1.5

Projects Gcc
Methods CBR CosTriage RABT

of overdue bugs 67 57 43
Δ 15 17 21

of un-fixed bugs 67 57 47
Δ 15 17 21

Fixing-days for project 1280 1139 897
Δ 243 210 213

Avg. Fixing-days per bug 5.1 4.6 3.6
Δ 1.0 0.9 0.8

time for project and the average fixing-days per bug, which
is assigned by RABT, are still smaller than others.

As long as the fixing-time is doubled when the assign-
ment is inappropriate, the estimated effect of lower accuracy
than CBR and CosTriage is not tremendous.

7.2 How to Handle Unassigned Bugs?

Evaluation II shows that RABT decreases the number of
overdue bugs in all projects, compared with existing meth-

ods. However, in all project, there were unassigned bugs
and we need to discuss how we should handle the unas-
signed bugs. We believe intently not assigning bugs will
be a compromise option because fixing all reported bugs in
modern software development is far from easy. Therefore,
RABT has the possibility to provide projects with practical
assignments. To realize the practical assignments for the fu-
ture work, RABT needs to utilize the priority and severity
tags in the bugs reports (specifically, bug priority predic-
tions [49], [50] and severity prediction [51], [52]) in order
to prevent higher priority bugs from remaining unassigned
rather than lower priority bugs†. For instance, according to
the levels of the priority (i.e., P1 [the highest priority], P2,
P3, P4, P5 [the lowest priority]), constant values (e.g., 500,
400, 300, 200, 100, respectively) should be added to the
preferences in order to prioritize bugs. By utilizing priority
or severity tags, it provides dispatchers with a new approach
to decide which bugs should be assigned and which bugs
should not be assigned for the next release, which is far from
general developer recommendations.

7.3 How to Set Appropriate Limit L?

In this experiment, we set the upper limit L = 6 for Platform
and Gcc, 15 for Firefox. However, it is unclear what im-
pact the size of the upper limit L has on the project. Hence,
we confirm how the accuracy of assignments and the num-
ber of overdue bugs vary with the size of the upper limit
L. Figure 9 is the accuracy of assignments and the num-
ber of overdue bugs for each upper limit L. The accuracies
dynamically increase from 1 to 14 for Firefox, from 1 to 5
for Platform, from 1 to 5. After that, the accuracies gradu-
ally increase until L is 31. Compared with the accuracies,
in all projects, the number of overdue bugs constantly (not
dynamically) raise while L increases. Therefore, we can say
that parameter L should be decided based on the accuracy.
Based on the accuracy, the points of which the increase of

†As described in Sect. 3.2.1, most of the bugs have incorrect
priority and severity. Only projects that correctly label bugs with
priorities and severities should utilize them.

360
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Fig. 9 Relationship between the size of L and the accuracy and the num-
ber of overdue bugs

the accuracy calm down are 15 for Firefox and 6 for Plat-
form. Thus, our way to set L, which is referring to the 3rd
quartile, might be appropriate.

7.4 How to Deal with Irregular Situations

As RABT is designed for automating usual bug assign-
ments, developers would have to help RABT to assign bugs
if unexpected problems happened. In the following, we dis-
cuss about likely irregular situations.

Nobody can fix the bug in the project: This situation
is likely to happen to any other bug-assignment methods in-
cluding manual bug-triage, but practically RABT should be
more careful about this situation because it aims to automate
bug assignments. In the RABT, the preference is relative
scores, produced by Support Vector Machine. That is the to-
tal of the possibility for each developer will be 1. Thus, even
if there are no appropriate developers, RABT (but also CBR
and CosTriage) can choose developers who are relatively ap-
propriate among all developers. In advance, the project has
to make the rule in case the problem happens. For example,
when the assigned developer thinks that no developers in the
project can fix the bug, the assigned developer must lead the
discussion with the other members about how to handle the
bug. By doing this, the project could take measures such as
calling for other professionals from outside of the project.

Developers are faced with technical or private prob-
lems: In the procedure of RABT, on every assignment,
available time slots (Ti) is incremented by the days from
the last assignment day to the assignment day. However, if
unexpected problems happened, there is a probability that
such simply incrementing might not correctly reflect their
workloads. For example, given that a developer is taking
more time than the estimated time because of technical or
private problems, RABT will continue to assign new bugs.
In case of unexpected problems, RABT needs a function to
stop assigning them (and/or a function to reassign the bugs
to the others) when RABT is implemented for applying to

practical projects.
As an alternative option instead of the simply incre-

ments function (Step 4), RABT could replace a new update
function that removes the occupied cost after the bug is fixed
in the available slot. Note that, even using the update func-
tion, the reassignment function should be required at least
because there are cases that developers cannot fix the as-
signed bugs because of technical problems.

7.5 Limitation

7.5.1 Fix Order of Bugs

In Experiment II, by comparing the number of bugs fixed
by the release with RABT and the two existing methods, we
confirmed that the existing methods remain many bugs not
fixed by the release. However, the number of bugs not fixed
by the release depends on the order in which the bugs are
fixed. In other words, if the bugs which are long bug-fixing
time was assigned in the early time of the experiment, the
number of the bugs not fixed by the release will increase.

7.5.2 Impact of Mitigating Task Concentration

In the experiment, we could confirm the effect of mitigating
the task concentration in RABT. However, mitigating task
concentration of some developers is also that other devel-
opers are assigned the tasks. Even though developers who
are relatively not in charge of tasks seem to have a scope
at first glance, they may have other development projects or
volunteers, so the time of activities may be limited. Hence,
developers who do not have many tasks are not necessar-
ily in a condition that can handle tasks. Since RABT has
not ascertained how long it can participate in the bug-fixing
activity in the month, the developer might be forced an ex-
cessive loads.

8. Conclusion

In this paper, we proposed a release-aware bug triaging
method (RABT) that aims to increase the number of bugs
that developers can fix by the next release date. Existing
methods tend to concentrate assignments of bug-fixing task
to a small number of developers because it does not con-
sider the difficulty and costs of individual bug-fixing. Since
general software development has the releases, even an ex-
perienced developer can finish the bug-fixing work that can
be used until the next release. Hence, the existing methods
are not practical.

RABT is characterized by considering the upper limit
of the amount of task that developers can work on during
a certain period, in addition to the ability of developers. In
this method, we considered the bug assignment problem as
a multi-knapsack problem, finding a combination of bugs
and developers that maximize developers’ ability under con-
straints which the method can assign in the only time that
developers can use for bug-fixing work. As a result of a

KASHIWA and OHIRA: A RELEASE-AWARE BUG TRIAGING METHOD CONSIDERING DEVELOPERS’ BUG-FIXING LOADS
361

case study on Mozilla Firefox, Eclipse Platform, GNU Gcc
project, the following three effects on the proposed method
were confirmed.

(1) RABT mitigates the situation where bug-fixing tasks are
concentrated to a small number of developers
(2) RABT can assign a more appropriate amount of bugs
that each developer can fix by the next release date
(3) RABT can reduce the time to fix bugs, compared with
the manual bug triaging method and the existing methods

Acknowledgments

This research is conducted as part of Grant-in-Aid for Japan
Society for the Promotion of Science (JSPS) Research Fel-
low and Scientific Research JP17J03330, JP17H00731 and
JP18K11243.

References

[1] A. Endres and D. Rombach, A handbook of software and sys-
tems engineering: empirical observations, laws and theories,
Pearson/Addison Wesley, 2003.

[2] E.S. Raymond, The Cathedral and the Bazaar: Musings on Linux
and Open Source by an Accidental Revolutionary, Oreilly & Asso-
ciates Inc., 2001.

[3] “Bugzilla.” https://www.bugzilla.org.
[4] “Jira.” https://www.atlassian.com/software/jira.
[5] J. Anvik and G.C. Murphy, “Reducing the effort of bug report triage:

Recommenders for development-oriented decisions,” ACM Trans-
actions on Software Engineering and Methodology, vol.20, no.3,
pp.1–35, 2011.

[6] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learn-
ing and multi-feature tossing graphs to improve bug triaging,”
Proc. 26th IEEE International Conference on Software Maintenance
(ICSM’10), pp.1–10, 2010.

[7] G. Bortis and A. van der Hoek, “Porchlight: A tag-based approach
to bug triaging,” Proc. 2013 International Conference on Software
Engineering (ICSE’13), pp.342–351, 2013.

[8] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, “Assigning
change requests to software developers,” Software: Evolution and
Process, vol.24, no.1, pp.3–33, 2012.

[9] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang, “An empirical study
on bug assignment automation using chinese bug data,” Proc. 3rd
International Symposium on Empirical Software Engineering and
Measurement (ESEM’09), pp.451–455, 2009.

[10] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using
a vocabulary-based expertise model of developers,” Proc. 6th IEEE
International Working Conference on Mining Software Repositories
(MSR’09), pp.131–140, 2009.

[11] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report as-
signee recommendation using activity profiles,” Proc. 10th Working
Conference on Mining Software Repositories (MSR’13), pp.22–30,
2013.

[12] M.M. Rahman, G. Ruhe, and T. Zimmermann, “Optimized assign-
ment of developers for fixing bugs an initial evaluation for eclipse
projects,” Proc. 3rd International Symposium on Empirical Software
Engineering and Measurement (ESEM’09), pp.439–442, 2009.

[13] R. Shokripour, Z.M. Kasirun, S. Zamani, and J. Anvik, “Automatic
bug assignment using information extraction methods,” Proc. 2012
International Conference on Advanced Computer Science Applica-
tions and Technologies (ACSAT’12), pp.144–149, 2012.

[14] A. Tamrawi, T.T. Nguyen, J.M. Al-Kofahi, and T.N. Nguyen, “Fuzzy
set and cache-based approach for bug triaging,” Proc. joint meet-
ing of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’11), pp.365–375, 2011.

[15] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage
with bug tossing graphs,” Proc. 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE’09),
pp.111–120, 2009.

[16] J. Park, M. Lee, H.S. Kim, Jinhan, and S. Kim, “Costriage: A cost-
aware triage algorithm for bug reporting systems,” Proc. Twenty-
Fifth Conference on Artificial Intelligence (AAAI’11), pp.139–144,
2011.

[17] T. Zhang and B. Lee, “A hybrid bug triage algorithm for developer
recommendation,” Proc. 28th Annual ACM Symposium on Applied
Computing, pp.1088–1094, 2013.

[18] P. Bhattacharya, I. Neamtiu, and M. Faloutsos, “Determining devel-
opers’ expertise and role: A graph hierarchy-based approach,” Proc.
30th International Conference on Software Maintenance and Evolu-
tion (ICSME’14), pp.11–20, 2014.

[19] D.W. McDonald, “Evaluating expertise recommendations,” Proc.
2001 International ACM SIGGROUP Conference on Supporting
Group Work (GROUP’01), pp.214–223, 2001.

[20] T.T. Nguyen, T.N. Nguyen, E. Duesterwald, T. Klinger, and P.
Santhanam, “Inferring developer expertise through defect analy-
sis,” Proc. 34th International Conference on Software Engineering
(ICSE’12), pp.1297–1300, 2012.

[21] R. Robbes and D. Röthlisberger, “Using developer interaction data
to compare expertise metrics,” Proc. 10th Working Conference on
Mining Software (MSR’13), pp.297–300, 2013.

[22] J. Anvik, L. Hiew, and G.C. Murphy, “Who should fix this
bug?,” Proc. 28th International Conference on Software Engineer-
ing (ICSE’06), pp.361–370, 2006.

[23] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in
bug repositories,” Proc. 34th International Conference on Software
Engineering (ICSE’12), pp.25–35, 2012.

[24] P.J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “ “not my
bug!” and other reasons for software bug report reassignments,”
Proc. 2011 ACM Conference on Computer Supported Cooperative
Work (CSCW’11), pp.395–404, 2011.

[25] G. John and P. Langley, “Estimating continuous distributions in
bayesian classifiers,” Proc. Eleventh Conference on Uncertainty in
Artificial Intelligence (UAI’95), pp.338–345, 1995.

[26] S.R. Gunn, “Support vector machines for classification and regres-
sion,” tech. rep., University of Southampton, Faculty of Engineer-
ing, Science and Mathematics; School of Electronics and Computer
Science, University of Southampton, 1998.

[27] J.R. Quinlan, C4.5: programs for machine learning, Morgan
Kaufmann Publishers Inc., San Francisco, 1993.

[28] Y. Kashiwa, M. Ohira, H. Aman, and Y. Kamei, “A bugtriaging
method for reducing the time to fix bugs in large-scale open source
software development,” Journal of Information Processing Society
of Japan, vol.56, no.2, pp.669–781, 2015, (in Japanese).

[29] S. Martello and P. Toth, Knapsack Problems: Algorithms and Com-
puter Implementations, John Wiley & Sons, Inc., New York, 1990.

[30] D. Pisinger, Algorithms for Knapsack Problems, Department of
Computer Science, University of Copenhagen, 1995.

[31] “Lpsolve.” http://lpsolve.sourceforge.net/5.5/.
[32] N. Kumar Nagwani and S. Verma, “Rank-Me: A Java Tool for Rank-

ing Team Members in Software Bug Repositories,” Journal of Soft-
ware Engineering and Applications, vol.5, no.4, pp.255–261, 2012.

[33] R.K. Saha, J. Lawall, S. Khurshid, and D.E. Perry, “Are these bugs
really ‘normal’?,” IEEE International Working Conference on Min-
ing Software Repositories, pp.258–268, 2015.

[34] S. Zaman, B. Adams, and A.E. Hassan, “Security versus perfor-
mance bugs: A case study on firefox,” Proc. 8th Working Confer-
ence on Mining Software Repositories (MSR’11), pp.93–102, 2011.

[35] D.M. Blei, A.Y. Ng, and M.I. Jordan, “Latent dirichlet allocation,”
Machine Learning Research, vol.3, pp.993–1022, 2003.

http://dx.doi.org/10.1145/2000791.2000794
http://dx.doi.org/10.1109/icsm.2010.5609736
http://dx.doi.org/10.1109/icse.2013.6606580
http://dx.doi.org/10.1002/smr.530
http://dx.doi.org/10.1109/esem.2009.5315994
http://dx.doi.org/10.1109/msr.2009.5069491
http://dx.doi.org/10.1109/msr.2013.6623999
http://dx.doi.org/10.1109/esem.2009.5316025
http://dx.doi.org/10.1109/acsat.2012.56
http://dx.doi.org/10.1145/2025113.2025163
http://dx.doi.org/10.1145/2025113.2025163
http://dx.doi.org/10.1145/1595696.1595715
http://dx.doi.org/10.1145/2480362.2480568
http://dx.doi.org/10.1109/icsme.2014.23
http://dx.doi.org/10.1145/500317.500319
http://dx.doi.org/10.1109/icse.2012.6227095
http://dx.doi.org/10.1109/msr.2013.6624041
http://dx.doi.org/10.1145/1134285.1134336
http://dx.doi.org/10.1109/icse.2012.6227209
http://dx.doi.org/10.1145/1958824.1958887
http://dx.doi.org/10.4236/jsea.2012.54030
http://dx.doi.org/10.1109/msr.2015.31
http://dx.doi.org/10.1145/1985441.1985457

362
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

[36] T.T. Nguyen, A.T. Nguyen, and T.N. Nguyen, “Topic-based,
time-aware bug assignment,” ACM SIGSOFT Software Engineer-
ing Notes, vol.39, no.1, pp.1–4, 2014.

[37] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R.
Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society of Information Science, vol.41, no.6, pp.391–407,
1990.

[38] T. Hofmann, “Probabilistic latent semantic indexing,” Proc. 22nd
annual international ACM SIGIR conference on Research and de-
velopment in information retrieval, pp.50–57, 1999.

[39] “Mozilla firefox.” https://www.mozilla.org/en-US/firefox/new/.
[40] “Eclipse platform.” https://projects.eclipse.org/projects/eclipse.

platform.
[41] “Gnu gcc.” https://gcc.gnu.org/.
[42] D. Cubranic and G.C. Murphy, “Automatic bug triage using text

categorization,” Proc. Sixteenth International Conference on Soft-
ware Engineering & Knowledge Engineering (SEKE’04), pp.92–97,
2004.

[43] A. Mockus, R.T. Fielding, and J.D. Herbsleb, “Two case studies
of open source software development: Apache and mozilla,” ACM
Transactions on Software Engineering and Methodology, vol.11,
no.3, pp.309–346, 2002.

[44] C. Sun, D. Lo, X. Wang, J. Jiang, and S. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” Proc.
32nd ACM/IEEE International Conference on Software Engineering
(ICSE’10), pp.45–54, 2010.

[45] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execu-
tion information,” Proc. 30th International Conference on Software
Engineering (ICSE’08), pp.461–470, 2008.

[46] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu,
“Open borders? immigration in open source projects,” Proc. 4th In-
ternational Workshop on Mining Software Repositories (MSR’07),
p.6, 2007.

[47] M. Mäntylä, F. Khomh, B. Adams, E. Engstrom, and K. Petersen,
“On rapid releases and software testing,” Proc. 29th IEEE Interna-
tional Conference on Software Maintenance (ICSM’13), pp.20–29,
2013.

[48] R. Arun, S. Vommina, C.V. Madhavan, and M.N. Murthy, “On
finding the natural number of topics with latent dirichlet alloca-
tion: Some observations,” Proc. 14th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining (PAKDD’10),
pp.391–402, 2010.

[49] Y. Tian, D. Lo, and C. Sun, “DRONE: Predicting priority of reported
bugs by multi-factor analysis,” IEEE International Conference on
Software Maintenance, ICSM, pp.200–209, 2013.

[50] J. Kanwal and O. Maqbool, “Bug prioritization to facilitate bug re-
port triage,” Journal of Computer Science and Technology, vol.27,
no.2, pp.397–412, 2012.

[51] T. Menzies and A. Marcus, “Automated severity assessment of soft-
ware defect reports,” Proc. 24th IEEE International Conference on
Software Maintenance, pp.346–355, 2008.

[52] R. Malhotra, N. Kapoor, R. Jain, and S. Biyani, “Severity Assess-
ment of Software Defect Reports using Text Classification,” Inter-
national Journal of Computer Applications, vol.83, no.11, pp.13–16,
2013.

Yutaro Kashiwa received his B.E. and M.E.
degrees in engineering from Wakayama Univer-
sity in 2013 and 2015 respectively. He worked
for Hitachi, Ltd. as a full-time software engineer
for two years. He has been a Ph.D. student at
Wakayama University and a JSPS research fel-
low since 2017. His research interests include
bug triaging and software release engineering.
He is a member of IEEE.

Masao Ohira received his Ph.D. degree
from Nara Institute of Science and Technology,
Japan in 2003. Dr. Ohira is currently Associate
Professor at Wakayama University, Japan. He
is interested in software maintenance and soft-
ware repository mining. He is a director of Open
Source Software Engineering (OSSE) Labora-
tory at Wakayama University. He is a member
of ACM and IEEE.

http://dx.doi.org/10.1145/2557833.2560585
http://dx.doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9
http://dx.doi.org/10.1145/312624.312649
http://dx.doi.org/10.1145/567793.567795
http://dx.doi.org/10.1145/1806799.1806811
http://dx.doi.org/10.1145/1368088.1368151
http://dx.doi.org/10.1109/msr.2007.23
http://dx.doi.org/10.1109/icsm.2013.13
http://dx.doi.org/10.1109/icsm.2013.31
http://dx.doi.org/10.1007/s11390-012-1230-3
http://dx.doi.org/10.5120/14492-2622

