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Abstract—Over a decade, many bug assignment methods have
been proposed in order to assist developers to read bug reports
submitted daily and numerously, and to assign an appropriate
developer. However, they tend to concentrate their assignments on
a small number of particular developers. Applying the methods
to the projects which have releases would reduce the number of
bugs that developers can fix by the next release date because the
time that developers can devote to bug-fixing is limited.

In this study, we propose the release-aware bug-fixing task
assignment method to mitigate the task concentration and in-
crease the number of bugs that developers can fix by the next
release date. This method employs mathematical programming
to find the best combination at project level while the traditional
methods find the best pair of a bug and a developer (at individual
level).

Index Terms—Bug-triaging, Task assignments, Optimization,
Software quality assurance, mining software repository

I. INTRODUCTION

Software release cycle has to be shorter because developers

are required to deliver new features or bug-fixes more rapidly

than rival companies do in order to gain ground [1]. Moreover,

software development is becoming more large-scale and more

complicated, which embeds numerous bugs in their product

[2]. Testing teams are able to find most of the bugs during

test phases, yet their high number makes it difficult to fix

them all by the next release because of lack of time. Core

developers read bug reports, discuss, prioritize, and then assign

them to appropriate developers. The work is well known for

being tough due to the numerous daily submissions of bug

reports [2], [3]. Therefore, many bug-fixing task assignment

methods have been proposed for over a decade [2], [4]–[6].

Most of the methods collect fixed bug reports, extract and

parse their description. The parsed text and the developer’s

name that brought the fix will be utilized for building a

classifier (e.g., SVM [7]). When a new bug is reported, the

methods will extract its description, use it as the input for the

models, and then predict an appropriate developer.

However, they tend to concentrate their assignments on a

small number of particular developers because the number of

past bug fixes differs depending on the developer. This makes

the training for each developer imbalanced. Generally, soft-

ware development is tied to release dates, therefore the number

of bugs that can be fixed by even experienced developers

before each release remains limited. The task concentration

on the specific developers by the traditional methods would

end up reducing the number of bugs that they can fix by the

next release date. Given that projects leverage the methods (es-

pecially, automated bug assignments), a release-aware method

is needed to fix more bugs by the next release date, leveraging

all the human and time resources of the project. We aim to

improve the efficiency of bug-fixing activities for projects in

totality, NOT for individual developers (as it has been done

in previous studies). For the first step of this study, we address

the following challenge,

Challenge I: Mitigating task assignments concentrating
on specific developers

Furthermore, these methods do not take into consideration

how important each bug-fix is, in other words, they regard all

bugs as the same. Bugs range from those that do not highly

disturb users and can be fixed by any developer (e.g., typos) to

those that should be fixed immediately or require professional

knowledge or advanced techniques in order to be resolved

(e.g., crash [8] or security bugs [9]) [10]. Considering the

impact on users or the difficulty, supports for decision making

of which bugs should be prioritized and fixed by the release

date are needed. Ideally, these methods assign the more
important bugs to the more highly experienced developers.
This study must also address the following challenge,

Challenge II: Assigning important bugs to experienced
developers

In this study, we propose the Release-Aware And Prioritized

Task Assignment Optimization Framework (RAPTOR) which

moderates the bug-fixing loads for specific developers to in-

crease the number of bugfixes by the next release date. We re-

gard the bug-fixing task assignment problem as a combination

problem about matching certain developers to certain bugs,

and we formulate it as a multiple knapsack problem to find the

optimal combinations. For the first challenge, we confirm that

(1) RAPTOR mitigates the task concentration problem caused

by existing methods and (2) assigns the appropriate amount

of bugs so that developers fix more bugs by the next release

date. For the second challenge, we focus on assigning the more

important bugs to the more highly experienced developers.
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II. TASK ASSIGNMENT TECHNIQUES

Over a decade, many bug assignment methods have been

proposed to reduce the quantity of effort coming from assign-

ments. We summarize bug assignment methods below.
Expertise-aware methods aim to assign bugs to the de-

veloper who has appropriate expertise which is calculated

from similar bugs that developers previously fixed [4]. The

similarity of bug reports is measured from the description

present in the bug reports [2], [4], [6], [11]–[16] or source

code history [17]–[20]. Anvik and Murphy build a classifier

(e.g., Naive Bayes [21], SVM [7]) with the sets of words in the

bug report and the name of the developer who fixed the bug

[2]. The model can recommend developers who are capable of

dealing with newly-reported bugs with relatively high accuracy

(about 70%-75%).
Importance-aware methods consider the levels of priority

or severity contained in bug reports which shows the impor-

tance of fixing the bug [22]–[24]. Priority and severity levels

show how important it is to fix bugs for developer and users,

respectively. Lin et al. have built a model considering priority

and severity in addition to text data, which was used to conduct

an empirical study with the data including Chinese characters

and showed non-textual data is comparable to textual data [23].
Activeness-aware methods try to assign bugs to active

developers in projects [6], [11], [25]. Wang et al. measured de-

velopers’ activity scores in each component for a few months

and built a method assigning bugs to the active developer who

has the highest score in the component that the bug involves

[25]. This method does not need training classifiers but has

improved about 20% of the accuracy of assignments compared

to expertise-aware techniques.
Experience-aware methods aim to assign bugs to develop-

ers who have contributed to projects [22], [26], [27]. Naguib

et al. have proposed a method to rank developers based on

the times of bug fixing activities (e.g., number of fixed bugs,

number of comments, and so forth) [26]. The method achieved

an average accuracy of 88% with the top 10 recommendation

and outperformed the expertise-aware method [15].
Cost-aware methods aim to reduce bug fixing time, to

keep the accuracy of assignments [5], [27], [28]. Park et al.

have extended Anvik’s method [2] and presented CosTriage

which takes the cost of bug-fixing into consideration [5].

Costriage requires estimating the cost of the fixing time for

each bug which is calculated on the average fixing time

of similar bugs in addition to the possibility of which the

assignment is appropriate, which is calculated in the same

way as Anvik’s method. Costriage assigns a bug to the most

appropriate developer, based on the ratio of how accuracy is

important compared to the quickness of bug-fixing which is

determined beforehand. While the accuracy decreases by about

5% compared with Anvik’s method, Costriage can reduce 7%-

31% of the average bug-fixing time.
Release-aware methods aim to assign bugs so that the

amount fixed by the next release date can be increased.

Although the other methods (described above) have the ad-

vantages of recommending appropriate developers or reducing

bug-fixing time, those methods tend to assign bugs to the

few developers who most frequently fixed bugs [5], [28] (We

will call this the ”task concentration problem”). The number

of bugs that even experienced developers can fix is limited

because most projects have short release cycles and the time by

the next release is limited, which should be taken into account

when developing methods. To the best of our knowledge, there

are no assignment methods that consider releases. In this study,

we try to build a release-aware method in order to increase the

number of bugs by the release. We place a limitation on the

number of tasks which are assigned to each developer during

a given period; the method assigns bugs under the constraint

with considering the ability of developers.

III. RAPTOR: RELEASE-AWARE AND PRIORITIZED TASK

ASSIGNMENT OPTIMIZATION FRAMEWORK

A. Overview of RAPTOR

In this study, we propose a Release-Aware and Prioritized

Task assignment Optimization fRamework (RAPTOR). This

optimizes the performance of the bug-fixing activity in projects

to increase bug-fixes by the next releases. Regarding the con-

centration problem of traditional methods that was identified

in the previous section, we propose imposing limitations on

assigning bugs to each developer so that the developer can fix

for a specific period. Under the constraints, RAPTOR finds

the best combination of bugs and developers for the project

while traditional methods recommend the best pairs between
a bug and a developer. RAPTOR cannot always assign the

bug to the best developer due to the constraint regarding the

prevention of concentration.

To solve the combination problem, we regard the bug-fixing

task assignment problem as a combination problem between

bugs and developers and use mathematical programming. In

the following section, we first describe a multiple knapsack

problem, which is the closest to the bug-fixing task assignment

problem, and we formulate the bug-fixing task assignment

problem as the multiple knapsack problem.

B. Multiple knapsack problem

The multiple knapsack problem [29] [30] extends the well-

known knapsack problem to multiple knapsacks. This is an

optimization problem that finds the best combination of items

(with certain weights and values) and knapsacks with maxi-

mum capacities so that the total value of the items in knapsacks

is maximized. The multiple knapsack problem is formulated

as follows.

Maximize :

n∑

i=1

m∑

j=1

vixij (1)

Subject to :
n∑

i=1

wixij ≤ cj (j = 1, 2, ...,m) (2)

m∑

j=1

xij ≤ 1 (i = 1, 2, ..., n) (3)

xij ∈ {0, 1} (4)
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where, vi and wi represent the value and weight of the i-
th item, respectively, whereas xij is the objective variable,

representing whether the i-th item is located in the j-th

knapsack (xij=1) or not (xij=0).

The purpose of the multiple knapsack problem is to find

combinations of xij values that maximize the equation 1

under the constraints of equations 2, 3, and 4. Equation 1

is the objective function and is used to determine whether

one combination of objective variable values is better than

the other. In this case, it aims to maximize the total value

of the selected items. In contrast, equation 2 is a constraint

that denotes that the total weight placed in the j-th knapsack

must be less than the maximum capacity it can carry (cj), and

equation 3 prevents any item being placed in more than one

knapsack. equation 4 denotes the constraint that the xij should

only take values of 0 (not selected) or 1 (selected). These are

able to be solved by a solver such as lp solve [31].

C. Application for Task assignment problem

We formulate bug assignment as a multiple knapsack prob-

lem as follows.

Maximize :

n∑

i=1

m∑

j=1

Pijxij (5)

Subject to :
n∑

i=1

Cijxij ≤ Tj (j = 1, 2, ...,m) (6)

m∑

j=1

xij ≤ 1 (i = 1, 2, ..., n) (7)

xij ∈ {0, 1} (8)

The items and the knapsacks are replaced into bugs (Bi)

and developers (Dj) respectively. The values and weights are

replaced respectively into the suitability of developer j for

fixing bug i (preference Pij) and the estimated number of

days it takes for developer j to fix bug i (cost Cij). The

preference is set up in different ways to tackle challenges I

and II (in Section IV and V). The costs are calculated with the

same procedure used in [5]. We categorize bugs with Latent

Dirichlet Allocation [32], measure the median value of bug-

fixing days by each category and developer, and use it as the

cost.

The capacities of knapsacks are replaced into available time
slots (Tj) for each developer (Dj), which is calculated from

an upper time limit Lj of each developer set in advance and

the total cost Cij already assigned to developer Dj . Figure 1

shows the method of calculation of Tj .

The objective variables (xij) represent whether the bug (Bi)

is assigned to the developer (Dj). We obtain a combina-

tion of items (bugs Bi) and knapsacks (developers Dj) that

maximizes the objective (bug-fixing efficiency for the whole

project) under each knapsack’s weight constraint (maximum

time available to each developer or limit).

Fig. 1. Calculation of available time slot

IV. THE APPROACH AND RESULT OF CHALLENGE I

A. Approach

Settings: To evaluate the mitigation effect of RAPTOR,

we set up preferences Pij in the objective function as
the probability developer Dj can fix the bug Bi, utilizing

the same way as CBR and CosTriage. The probabilities are

calculated by a classifier trained using the description of the

bug and the name of fixers. Regarding the upper time limits

Lj , we can prepare the limits for each developer but use the

third quartile value of all the costs Cij , which is a constant

value, to simplify this study. The costs Cij are calculated with

the same procedure used in [5].

Datasets: We conducted a case study on three large OSS

projects (Mozilla Firefox [33], the Eclipse Platform [34], and

GNU compiler collection (GCC) [35]) which are commonly

used in previous studies [4]–[6]. We prepare both learning and

evaluation datasets. We use one year of data (from the first

assignment day) as training data for all projects, 12 weeks of

data (Firefox) and three months of data (Eclipse and GCC)

before the main release as evaluation data. We execute the

following three filters to validate data. Firstly, among all the

collected bugs, we have only considered fixed bugs where

the fixer and fixing time could be identified. Secondly, we

removed bugs whose fixing-time meant they were outliers

– Boxplots are used for this purpose. The reason for doing

so is that some of the bugs were fixed after several years.

Finally, we exclude the bugs fixed by not active developers

to guarantee the accuracy of the task assignments [36]. We

designate developers as “active”, as those who had fixed six

or more bugs within six months.

Experimental procedure: In this experiment, tasks were

assigned using both the existing methods and RAPTOR,

the bug-fixing times were calculated based on the resulting

assignments. An overview of the experiment is shown in

Fig. 2. Working through the experimental dataset (i.e., the

evaluation data) in order, we extracted the bug reports for

each date and used both the proposed and existing methods

to assign the bugs. Once assignments had been made for all

days, the bug-fixing times were calculated (Figure. 2, right).

Since the assignment methods considered here do not always

assign the bugs to the developers who fixed them, this means

the actual bug-fixing time cannot be calculated. We used the
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Fig. 2. Overview of experiment

median times taken by the individual developers to fix the bugs

in each category (that is, the costs Cij) from the training data

as the bug-fixing times for the experiment.

Evaluations: We have prepared four evaluations to inves-

tigate whether RAPTOR could improve bug-fixing efficiency

by assigning tasks to appropriate developers and considering

the time they had available for bug-fixing, and compares

the content-based recommendation (abbr. CBR) method [2]

(expertise-aware) and CosTriage [5] (Cost-aware). We make

sure whether RAPTOR can prevent tasks being concentrated

on certain developers and can reduce the numbers of overdue

bugs (which are assigned but fixed after the release). As an

evaluation criterion of task concentration, the bug-fixing time

should not exceed the evaluation data period for each project.

Moreover, we evaluate RAPTOR in terms of the merit of the

traditional methods and confirm the accuracy of assignments

and bug-fixing. The accuracy of assignments measures a rate

of the number of appropriate assignments and the number of

all assignments. The appropriate assignment is defined as an

assignment to the developer who has experienced fixing bugs

with the same component as the target bug.

B. Result

Due to the limitation of space in this paper, we show the

results of Firefox which are similar to the others.

[Finding 1] The traditional methods tend to concentrate
tasks on some developers, but RAPTOR can mitigate the
risk: We confirmed the number of tasks (the number of days

to fix) that each active developer worked on. The number

of developers who contributed for longer than the evaluation

data period (Firefox: 12 weeks) using CBR and CosTriage,

is eight and seven developers respectively. As for the task

concentration by RAPTOR, the number of developers is four

developers.

[Finding 2] RAPTOR can assign a more appropriate
amount of bugs than the traditional methods do: We

looked into the numbers of bugs that were assigned and fixed

after the release. In Firefox, 77 bugs were overdue when

using CBR, 75 bugs by CosTriage, and 31 bugs by RAPTOR.

RAPTOR can assign a more appropriate number of bugs to

each developer compared to the existing methods. On the

other hands, there are 19 bugs that RAPTOR did not assign.

Considering the un-assigned bugs, RAPTOR is still better than

traditional methods, but this suggests that RAPTOR should
prioritize high priority bugs (This is tackled in Challenge

II).

[Finding 3] RAPTOR can reduce 46% of the bug-fixing
time, compared with the traditional methods: The total

bug-fixing days in Firefox is 1,843 days by CBR, 1,838 days

by Costriage, 997 days by RAPTOR. RAPTOR could reduce

about 46% of the days compared to both CBR and CosTriage.

[Finding 4] RAPTOR has a 21% lower assignment
accuracy than CBR: The accuracy of assignments in Firefox

was 81.7% by CBR, 81.0% by CosTriage, 60.6% by RAPTOR.

This is because CBR is assigned to the developer with the

largest preference, RAPTOR assigned bugs to developers so

that the preferences are higher for the project (not for the

developer). We are concerned that the low accuracy will induce

a bug reassignment, and we are planning to investigate the

negative impact of reducing accuracy. We will study methods

to prevent from lowering it in future work.

V. THE PLAN OF CHALLENGE II

(CURENT STATE OF RESEARCH)

In challenge I, RAPTOR mitigated the task concentration

problem, but it has not taken into account bugs that should

be prioritized and fixed by the release date. For challenge

II, we plan to replace the preference Pij into the following

formulation designed for assigning more important bugs to

more experienced and active developers.

Pij = 10 (prii ∗ sevi) ∗ suiij ∗ conij ∗ actij (9)

where prii and sevi represent the levels of priority and severity

respectively. The priority and severity of Bugzilla [37] have

five and seven levels respectively, we assign the value of 1 to

the lowest level and gradually increment the numbers matching

their severity and priority levels. To prioritize higher levels, we

calculate the tenth power of the multiplied value of priority

and severity scores.

suiij represents the possibility that the assignments of bug

Bi is appropriate to developer Dj (the same way as Challenge

I and the traditional methods).

conij is the number of contributions that Dj has fixed the

same component of Bi. actij represents the activeness that Dj

contributes to the component of Bi for the most recent period

and refers to the inverse number of the days from the last

date of contribution to the date when assigning bugs. These

are set up for assigning bugs to well-experienced and active

developers.

Multiplication of these parameters helps higher importance

bugs to be assigned to experienced and active developers.
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