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Abstract—Stack Overflow has been already recognized as
an indispensable CQA (Community Question and Answering)
service for developers. However developers as questioners some-
times cannot get any answers or they only can get incomplete
answers to resolve their questions, since over several thousands
of questions and answers are posted on a daily basis and
expert developers are currently facing with a difficulty in finding
questions which can be better or best answered by them. In
order address the issue, our study aims at developing a bot that
helps expert developers find questions matching each developer’s
expertise. The existing study [8] proposed a promising approach
to the expert recommendation for CQA services, based on
PMF (Probabilistic Matrix Factorization) algorithm. In order to
improve the accuracy of the expert recommendation, in this paper
we present our approach which combines the PMF (Probabilistic
Matrix Factorization) approach and a term expansion techniques
using word embeddings. As a result of an experiment comparing
our approach with the existing approach only based on PMF, we
show that our approach based on PMF and the term expansion
with Word2vec and fastText slightly outperforms the existing
approach only based on PMF.

Index Terms—expert recommendation, community question
and answering (QCA) services, Stack Overflow, PMF (Proba-
bilistic Matrix Factorization), term expansion, word embeddings,
Word2vec, fastText, personal bot for software engineering

I. INTRODUCTION

Since modern software products often become large and
complex to satisfy various, changing user needs during long-
term use, developers need to acquire technical information
and knowledge from outside developers [1]. For that reason,
communication media for discussions among developers have
changed from mailing lists or forums in a project to com-
munity question and answering services (CQA) such as Stack
Overflow in recent years.

In Stack Overflow, over nine million users discuss a wide
variety of topics relative to computing technologies such as
programming languages and development tools. Stack Over-
flow has been already recognized as an indispensable CQA
service for developers, but an important issue has been arising
from its popularity. In Stack Overflow, over several thousands
of questions and answers are posted on a daily basis. However,
about half of the questions are not resolved and about 30%

of the questions are not even answered [2]. Furthermore,
unresolved questions tend to be increasing these days [3].

Users in Stack Overflow can find questions from “Top
Questions” which show the latest, featured, or most viewed
questions on the top page of Stack Overflow. Otherwise, they
can search questions with queries or keywords tagged by
questioners. Due to the current search mechanism provided
by Stack Overflow and a large number of posted questions as
mentioned above, users are currently facing with a difficulty
in finding questions which can be better or best answered by
them. As a result, developers as questioners sometimes cannot
get any answers or they only can get incomplete answers to
resolve their questions.

Several existing studies [4]–[8] proposed methods to recom-
mend experts (i.e., appropriate questionees for each question)
to address the issue above. If the proposed methods are
applied to CQA services, users would not need to search
questions anymore and each user can get a notice from the
CQA services individually when a question is posted and
it matches expertise of each user. Our study is also in line
with the existing approach, but we are trying to improve the
recommendation accuracy using “term expansion” described
later and implementing a recommendation engine as a personal
bot in order to help users in CQA services find questions more
effectively.

In what follows, existing studies are introduced and the
limitation of them is discussed in Section II. Our approach
using the term expansion is presented in Section III. A
preliminary experiment and its result are described in Section
IV. Based on the result of the experiment, the future direction
of our study is discussed in Section V. Finally the paper is
concluded and our future work is remarked in Section VI

II. EXPERT RECOMMENDATION IN CQA

Although there are various text mining approaches to sup-
porting users in CQA services such as best answer prediction
[9], [10] which helps questioners select the best answer when
many answers are posted (i.e., less knowledgeable questioners
cannot judge which is the best answer.), in this section we



focus on some existing studies on expert recommendation
which aims at helping expert developers (questionees) find
questions that match their own expertise and at the same time
aims at resulting in helping regular developers (questioners)
get useful answers in CQA services.

A. Topic Modeling

One of promising approaches to the expert recommendation
in CQA is to use topic modeling which assists to infer
“who is knowledgeable about which topic?” from relationships
between topics and and past answers relative to the topics.
Yang et al. [4] proposed Topic Expertise Model (TEM) using
topic modeling and also proposed a method called CQArank
which combines TEM and link structures among users to
recommend experts. Wang et al. [5] proposed Question-LDA
based on Twitter-LDA which can extract topics even if a text
consists of a small number of terms (i.e., short text such as a
tweet). They also proposed an expert recommendation method
called NEWHITS which improves the HITS algorithm used
to consider link structures among users. However, the topic
modeling-based approaches requires all of the question and
answer data such as texts and keyword tags to extract topics.
In other words, an enormous amount of computing resource is
required to apply the proposed methods to CQA services, since
CQA services such as Stack Overflow store a vast number of
questions and answers. It would be very difficult to constantly
or periodically apply the proposed methods (i.e., create a topic
model) to CQA services.

In addition to the topic modeling approaches above, some
improved techniques have been proposed. Tondulkar et. al [6]
focus not only on text information of questions and answers
but also on tag information and historical information of users’
activities in CQA services and used LamdbaMART [11] as a
rank learning algorithm to rank users for a posted question.
Wang et. al [7] proposed an expert recommendation approach
based on CNN (Convolutional Neural Networks). It utilizes
text information of questions and answers and information
of user profiles. As same as the topic modeling approaches,
these approaches uses a vast number of text (questions and
answers), tags and users’ activities and profiles. Since our
study aims at improving the prediction accuracy of tag-based
approaches which direct effort toward reducing computational
costs, the existing studies introduced in this subsection are
different approaches from our study.

B. Tag-based Recommendation

To reduce the computational cost for topic modeling, Yang
et al. [8] proposed an expert recommendation method which
dose not use contents of questions and answers but only uses
keywords tagged with questions. In the study, tagged keywords
are assumed to well-summarize contents of a question and
to act as “topics” as same as topic modeling. The proposed
method firstly extracts tagged keywords in a question and
voting scores in an answer as illustrated in Figure 1. In
Stack Overflow, users can vote answers that are useful for
the question. In the study, higher voting scores are assumed

Fig. 1. Example question in Stack Overflow. The question is tagged with the
three keywords: python, list and sorting. The question has severn answers and
one of the answers is voted by forty eight users as “This answer is useful.”

to be a more useful answer and the voting score is used as an
indicator to evaluate the quality of the answer.

Second, the proposed method creates a user-tag expertise
matrix where the row consists of users Ui and the column
consists of tagged keywords Tj . A value in the matrix are
calculated by averaging voting scores of Ui’s answers to
questions with Tj . Here, since it is not possible that all the
users answer all the questions, the original matrix becomes
sparse. However, it does not necessarily mean a user cannot
answer questions with particular keywords which have not
been used for questions s/he has answered. In the study, PMF
(Probabilistic Matrix Factorization) [12] is utilized to predict
and complement zero values in the sparse matrix. In other
words, PMF is used to infer the voting score when a user
answers a question which have not been answered by the user.

Finally, using the user-tag expertise matrix processed by
PMF, the proposed method recommends experts suitable for a
newly posted question. When a new question is posed, tagged
keywords are extracted, voting scores for Ui are calculated,
and then users having higher scores are recommended for the
question. In [8], the proposed method shows better perfor-
mance in the recommendation accuracy and in the running
time than the existing topic modeling-based method (TEM).

C. Limitation of Tag-based Recommendation

Although [8] outperforms the existing method, we believe
it can still be improved. The expert recommendation method
in [8] does not consider spelling variants of tagged keywords
and similar keywords but deals with them individually. For
instance, suppose that “java” is tagged to one question and
“java-9” is tagged to another question when two questions are
posted and that a developer answers the question with “java-



Fig. 2. Overview of our approach. It consist of three parts: (A) prediction of each user’s voting scores using PMF [12], (B) keyword expansion using word
embeddings (Word2vec or fastText), and (C) ranking for the expert recommendation.

9” and had not answered questions with “java.” In this case,
the developer’s voting score for questions with “java become
zero even if the developer has a great deal of expertise on
“java.” In our study, we try to improve [8] by expanding tagged
keywords based on word embeddings in order to mitigate the
issue of spelling variants of tagged keywords. In the near
future, we will implement the improved method as an engine
for a personal bot to help an expert developer find questions
that match her/his expertise. In the next section, we present
our approach in detail.

III. APPROACH

Figure 2 shows an overview of our approach which consists
of three parts: (A) prediction of each user’s voting scores using
PMF [12], (B) keyword expansion using word embeddings,
and (C) ranking for the expert recommendation. In what
follows, we describe each part.

A. Prediction of Each User’s Voting Scores using PMF

As same as [8], a user-tag expertise matrix is firstly created
based on each user’s voting scores and tagged keywords
used in questions. An entry sij in the matrix represents an
average score for user u’s answers to questions with a tagged
keyword t. Next, PMF is applied to the matrix to predict and
complement voting scores in the matrix as illustrated in the
top left of Figure 2.

B. Keyword Expansion using Word Embeddings

As we mentioned earlier, the existing approach [8] does
not consider spelling variants of tagged keywords and similar
keywords but deals with them individually. In order to address
the issue that makes a user-tag expertise matrix sparse (i.e.,
the limitation of the tag-based recommendation approach), our
approach uses term expansion based on word embeddings.
Word embedding is a technique to obtain a word vector
space model based on neural networks. In this study, we use
the skip-gram models in Word2vec [13] and fastText [14]

respectively. In our approach, keywords tagged for a past
question are extracted and are regarded as a set of tagged
keywords. Furthermore, a set of tagged keywords is treated as
a sentence and all the sets of tagged keywords extracted from
past questions in the target dataset are modeled based on word
embeddings.

The same keywords would be positioned around similar
keywords in the word vector space models. For instance,
suppose that a new question is tagged with “java-9” and one
expert had answered questions tagged with “java” but had
not answered to “java-9.” In our approach, the term “java-
9” can be expanded to “java-9” and “java” since “java-9”
and “java’ should be nearly positioned in the representation
of word embeddings.

The number of expanded terms (keywords) can be arbitrarily
changed to optimize the prediction accuracy. For instance,
if a question has a tagged keyword “java-9,” the number of
expanded terms can be changed such as [java-9, java (Expand
1)], [java-9, java, java-module (Expand 2)], [java-9, java, java-
module, jigsaw (Expand 3)], and so on. The term expansion
is applied to each keyword which is originally tagged to a
question. PMF also works as with the term expansion since it
complements voting scores for questions which have not been
answered by experts. Our approach uses the term expansion to
strengthen the effect of PMF using tagged keywords extracted
from a newly posted question.

C. Ranking Experts for a Newly Posted Question

For a newly posted question q, the recommendation score
ReScore(u, q) is calculated as

ReScore(u, q) =
1

Nt

Nt∑
t=0

R(u, t) (1)

where R(u, t) represents the recommendation score of user
u for tagged keyword t which is calculated by PMF. Nt

is the number of keywords tagged for the new question q.



ReScore(u, q) means the average score of PMF when user u
answers a question q with some tagged keywords.

Based on the calculated recommendation scores for all the
users, a list of ranked experts can be created as illustrated in
the right of Figure 2. Although the existing study only uses
the list to find experts suitable for a new question, a bot based
on our approach uses the list to let promising experts know
when the question suitable to the experts is coming.

IV. EXPERIMENT

To evaluate our approach, we conduct a preliminary experi-
ment which compares our approach with the existing approach
[8].

A. Dataset

For the experiment, questions and answers posted from 2008
to 2017 are collected from Stack Overflow in a XML format as
a dataset. Extracting tagged keywords used for questions from
July 31, 2008 to December 31, 2014, two word embedding
models are created using Word2vec and fastText respectively.
For PMF’s learning data, tagged keywords from January 1,
2015 to December 31, 2015 are extracted. Voting scores are
also extracted only from users who answered over 50 times
during the same period. For evaluating our approach and the
existing approach, we select questions which are answered by
more than six users and their answers from January 1, 2016
to December 31, 2017.

B. Experiment Setting

In the experiment, the existing approach (PMF) and our
approach (PMF + term expansion) are compared using the
recommendation accuracy. The recommendation accuracy is
calculated using nDCG（normalized discounted cumulative
gain）[15] which is regularly used as a performance indicator
in ranking recommendation studies and indicates how recom-
mended ranked data is adequate. nDCG is expressed from 0 to
1 and the higher nDCG score means the better performance.
As our approach has the term expansion feature, we evaluate
our approach changing the number of expanded keywords
from one to four. For each approach, nDCG is calculated ten
times and the average score of them are presented as a result
because PMF stochastically predicts and complements values
of entities (voting scores) in the user-tag expertise matrix.

The experiment is run on Macbook Pro (CPU: 2.5GHz
Intel Core i7, Memory: 16GB). It takes about two seconds for
each iteration and about a thousand seconds for 500 iterations
in total for creating a PMF model which is used in the
both approaches. Creating a vector model for Word2vec and
fastText respectively spends about one hour and four hours for
100 iterations.

C. Result

1) nDCG score: Table I shows the result of the experiment.
The result of the existing approach is used as baseline (0.824).
From the table, we can confirm our approach using Word2vec
outperforms the existing approach in case where additional

TABLE I
RESULT (NDCG SCORE)

Method nDCG
Baseline 0.824

Word2vec (Expand 1) 0.825
Word2vec (Expand 2) 0.827
Word2vec (Expand 3) 0.822
Word2vec (Expand 4) 0.823
fastText (Expand 1) 0.833
fastText (Expand 2) 0.825
fastText (Expand 3) 0.827
fastText (Expand 4) 0.831

TABLE II
RANK RESULT (QUESTION ID: 41960019)

User ID Ideal Baseline fastText
5047996 1 2 2
2861476 2 4 1
778560 2 5 3
388389 3 6 4

1417694 3 1 5
2128947 3 3 6
nDCG 1.000 0.766 0.899

Term Expansion: batch-file→command-prompt, cmd→command-prompt

TABLE III
RANK RESULT (QUESTION ID: 41613710)

User ID Ideal Baseline fastText
3001626 1 8 3
4341440 2 6 7
3304471 3 1 1
3987294 4 2 2
5635580 4 3 6
3732271 5 5 4
3962914 5 7 8
nDCG 1.000 0.821 0.871

Term Expansion: r→wolfram-mathematica

one (Expand 1) and two (Expand 2) keywords are added to
the original keywords tagged to a question. However, the term
expansion does not improve the nDCG score in case of using
additional three (Expand 3) and four (Expand 4) keywords.
On the other hand, our approach using fastText outperforms
the existing approach in all the conditions. In particular, one
additional keyword by fastText (Expand 1) shows the best
nDCG score (0.833).

2) Examples of Ranking Results: As we mentioned earlier,
a nDCG score in Table I is the average of nDCG scores
calculated ten times for each question. Although Table I
shows fastText (Expand 1) indicates the best nDCG score in
this experiment, the nDCG score varies depending on each
question. In other words, nDCG in one condition (e.g., fastText
(Expand 1)) is not always consistent for all the questions but
may shows better and worse scores. To better understand the
effect of the term expansion, we select and analyze examples
of two better rankings and two worse rankings in the condition
of fastText (Expand 1).

Table II and Table III shows examples of rankings when
nDCG scores outperform the average score (0.833). In the



TABLE IV
RANK RESULT (QUESTION ID: 42239179)

User ID Ideal Baseline fastText
4653379 1 2 4
5291015 2 1 6
2173773 3 7 7
589924 4 3 5
6862601 4 6 2
298607 5 4 3
nDCG 1.000 0.960 0.705

Term Expansion: awk→nawk, bash→bash4, grep→find-grep,
linux→linuxbrew, perl→perlguts

TABLE V
RANK RESULT (QUESTION ID: 46043445)

User ID Ideal Baseline fastText
3063910 1 1 4
4895725 2 2 3
3732271 3 3 3
3604745 3 3 3
496488 4 3 2
nDCG 1.000 0.836 0.695

Term Expansion: appned→prepend, dataframe→data.table,
matrix→matrix-math, r→wolfram-mathematica, rbind→cbinda

Tables, “Ideal” means a result of the actual ranking based on
actual voting scores. “Baseline” and “fastText” means a result
of the predicted ranking based on the existing approach (only
PMF) and our approach (PMF + term expansion) respectively.
Note that our approach in this comparison uses fastText
(Expand 1).

As shown in Table II, fastText (Expand 1) is much better
(0.899) than Baseline (0.766) for Question ID: 41960019.
Question ID: 41960019 is titled “count an exact character
in one line - cmd” with two tags (“batch-file” and “cmd”)
originally and is answered by six experts. 41960019 is about
how to write a batch file to count the number of occurrences of
a specific character in each line of a text file. fastText (Expand
1) added a tag “command-prompt” to the original tags (“batch-
file” and “cmd”). Compared to Ideal (ranking based on actual
voting scores), fastText (Expand 1) only have a difference of
ranks between top 1 and top 2, while Baseline is very different
from Ideal. This is a good example that the term expansion
improved the accuracy of PMF.

As shown in Table III, fastText (Expand 1) is slightly better
(0.871) than Baseline (0.821) for Question ID: 41613710.
Question ID: 41613710 is titled “Extend an irregular sequence
and add zeros to missing values” with one tag (“r”) originally
and is answered by seven experts1. 41613710 is about how to
expand an irregular sequence with a regular sequence in a data
frame using R. fastText (Expand 1) added a tag “wolfram-
mathematica” to the original tag (“r”). Compared to Ideal,
Baseline ranked top 8 in Ideal as top 1, while fastText (Expand
1) ranked top 8 in Ideal as top 8. However, the ranking of

1This question was actually answered by nine users. Because of the filtering
described in subsection IV-A, the seven users with over 50 answers in the past
were selected as experts.

fastText (Expand 1) also still seems imperfect since top 7 is
ranked as top 2 and top 1 and top2 are not improved from
Baseline. From this example, we cannot clearly confirm the
effect of the term expansion.

Table IV and Table V show examples of rankings when
nDCG scores underperform the average score (0.833). As
shown in Table IV and Table V, the nDCG scores of fastText
(Expand 1) are much worse (0.705 and 0.695) than Baseline
(0.960 and 0.836) respectively for Question ID: 42239179 and
46043445.

Question ID: 42239179 is titled “Fastest way to find lines
of a file from another larger file in Bash” with five tags
(“awk”, “bash”, “grep”, “linux” and “perl”) originally and is
answered by six experts2. Question ID: 46043445 is titled
“How to append group row into dataframe” with five tags
(“appned”, “dataframe”, “matrix”, “r” and “rbind”) originally
and is answered by five experts3. Both the results of fastText
(Expand 1) are very different from Ideal and Baseline. This
might happen because both the questions respectively have five
tags and our approach uses five original tags and five expanded
tags for each question (i.e., over-expansion). Although fastText
(Expand 1) only expands each original tag to two tags (original
+ expanded tags), the term expansion technique have a bad
effect on the prediction accuracy when a question has many
tags such as Question ID: 42239179 and 46043445. This might
be also related to the reason why Word2vec (Expand 3) and
Word2vec (Expand 4) were worse than the baseline and why
fastText (Expand 2), fastText (Expand 3), and fastText (Expand
4) were worse than fastText (Expand 1) in Table I. We need
to further investigate the effect of the term expansion in the
future.

V. DISCUSSIONS

From the experiment, we found that our approach using
the term expansion slightly outperforms the existing approach
and the term expansion based on fastText works better than
Word2vec. The reason why the term expansion based on fast-
Text is better than Word2vec is that fastText uses information
of subwords which are a piece of a word. In general, it is
well known that Word2vec cannot precisely obtain synonyms
for one word when the word is not frequently appeared in
text documents. On the other hand, since fastText learn text
data using subwords, the term expansion based on fastText
would contribute to obtain similar keywords even from rarely
appeared keywords. fastText can also obtain similar keywords
which are only included in test data but not included in
learning data because of the same reason above (e.g., since
keyword “sqlite” not appeared in learning data is divided to
sql+qli+lit+ite, similar keywords such as “mysql” and “sql”
can be obtained from test data.) , but Word2vec cannot do so.

Although in this paper the term expansion based on word
embeddings is assumed to be applied after receiving a new
question, we are planing an alternative approach which does

2This question was actually answered by sixteen users.
3This question was actually answered by nine users.



not use the term expansion but creates a user-tag expertise
matrix based on PMF after unifying similar tagged keywords
using word embeddings. Unifying similar tagged keywords in
advance might contribute to the improvement in the prediction
accuracy and the reduction of the computational cost for PMF
since it transforms rarely used keywords (i.e., noisy data for
the prediction) into frequently used similar keywords. We also
plan to further improve our approach in order to reduce the
computational cost for word embeddings using Word2vec and
fastText. Currently all the tagged keywords are learned by
Word2vec and fastText, but the computational cost must be
reduced by only learning commonly appeared keywords using
association rule mining. It also might contribute to the im-
provement in the prediction accuracy because it means rarely
used keywords are not learned by Word2vec and fastText.

VI. CONCLUSION AND FUTURE WORK

In this paper we present our approach to the expert recom-
mendation for CQA services which are actively used by an
enormous number of developers engaging in the modern soft-
ware development. Our approach based on PMF and the term
expansion with Word2vec and fastText slightly outperforms
the existing approach only based on PMF.

We are currently working to incorporate our approach into
an engine for a personal bot which helps expert developer find
questions that match their own expertises. At the same time, as
we discussed above, we are studying to improve the prediction
accuracy and to reduce the computational costs for PMF and
word embeddings.
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