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Abstract—This paper introduces a tool called CCT (Code
Clone Tracer) which is designed to help practitioners and re-
searchers analyze the impacts of human/social factors on software
quality in creating and reusing code clones. CCT tracks a history
of created and reused code clones for all the revisions in a
distributed version control system such as Git. The tool also
has features to analyze the relationship between bug-inducing
changes and developers, working together with a bug tracking
system such as Bugzilla and JIRA. This paper reports our pilot
case study where CCT is applied to three open source projects
(RxJava, c:geo, and Jackson databind). The results of the case
study indicated that a small number of particular developers
were involved in many of clone changes to resolve issues.

Index Terms—code clone tracking, software evolution, social
network analysis, software quality, open source software devel-
opment

I. INTRODUCTION

A number of studies on code clone detection [1]–[3] and
analysis [4]–[6] have been reported in the past two decades
to address concerns over the code clone management and
maintenance. Especially in recent years, some research groups
[7]–[9] have been focusing on the propagation process of
code clones in long-term evolving systems and its impacts
on software quality. In oder to analyze the clone propagation
process, [7], [9] have proposed methods for efficiently tracking
code clones which were created and reused in the past.
However the methods assumed to be used to analyze the clone
propagation process recorded in a centralized version control
system (CVCS) such as Subversion. It is required to extend
them to analyze the code clone propagation process managed
in a widely-used distributed version control system (DVCS)
such as Git and it is the first motivation for us to develop a new
tracking tool. We are also strongly interested in uncovering

• who has been involved in creating and reusing code
clones?,

• how did they efficiently or inefficiently manage and main-
tain propagating clones in an evolving system?,

• wha kind of impact does the involved developers and
management styles have on software quality? and so forth

because only a limited number of studies reported so-
cial/human factors in creating and reusing code clones.

In this paper, we propose a new code clone tracking tool
called CCT (Code Clone Tracer). CCT can track the code
clone propagation process recorded in a DVCS reporsitory. In
addition, CCT has features to analyze the relationship between
bug-inducing changes and developers, working together with
a bug tracking system such as Bugzilla and JIRA. In this
paper, we also report our pilot case study where relationships
between developers and code clones in three open source
projects (RxJava, c:geo, and Jackson databind) are visualized
and analyzed using a dataset created by CCT.

II. CCT: CODE CLONE TRACER

This section describes a tool called CCT (Code Clone
Tracer) which is aimed at helping practitioners and researchers
analyze human/social factors in the process of creating and
reusing code clones. Since CCT is intended to be used for
tracking code clones from a software change history con-
sisting of up to tens thousands of revisions in a distributed
version control system such as Git, it is implemented using
a coarse-trained clone detection technique [7], [9] to reduce
the time required to detect and track code clones from the
entire revisions. The tool also has features to analyze the
relationship between bug-inducing changes and developers,
working together with a bug tracking system (e.g., JIRA). In
what follows, we introduce each feature of CCT in detail.

A. Code Clone Tracking

CCT has the following process to provide a feature for
tracking a history of code clone creations and reuses recorded
in a distributed version control system (DVCS)1.

1) Identifying parent-child relationships among revisions
in Git: Traditional clone tracking tools [7], [9] trace back
revisions in a centralized version control system (CVCS) in
chronological order and identify code clones in each revision.
Since CCT targets at tracing revisions in a DVCS where

1Currently, CCT only supports Git repositories. It is still under construction
for other kinds of distributed version control systems
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Fig. 1: Parent-child relationships of revisions in a distributed version
control system
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Fig. 2: Detected, normalized, and hashed blocks

revisions are often be branched and merged intricately, it
needs to identify parent-child relationships of revisions as
illustrated in Figure 1. First, CCT acquires revision (commit)
IDs in a target repository. Second, it identifies parent-child
relationships for each revision as in the left of Figure 1.
Finally, it records the parent-child relationships as a table (the
right of Figure 1). The parent-child table is used to refer to
identify a revision with multiple parents and children in the
later processing.

2) Identifying all the code fragments in each revision:
In this process, source files to extract code fragments from
each revision are identified based on the information of each
commit. First, CCT acquires the information about revision
IDs, committed date and time, committers’ IDs (names) and
changed (added/modified/deleted) source files from commit
logs. Second, all the source files included in the first revision
are identified for extracting all the code fragments (i.e., blocks
in this paper) in the later step. Third, beginning at the first revi-
sion, changed source files are identified by sequentially tracing
back revisions to the latest revision. A revision created by a
marge commit is often detected during identifying changed
source files, because CCT analyzes a DVCS repository. If
a merge commit has no conflict, through comparing two
commits right before the merge commit, changed source files
are regarded as target files for extracting code fragments. If
a merge commit has a conflict, all the source files included
in the revisions created by the merge commit are regarded as
the target files since the process until resolving the conflict is
not recorded occasionally. Finally, as illustrated in Figure 2
(STEP1 & STEP 2), code fragments are extracted as blocks
with syntactic and lexical analysis for identified target files in
each revision.

3) Identifying code clones: All the code fragments in all
the revisions are identified as blocks in the previous process.
The identified blocks are normalized (STEP 3 in Figure 2) by
replacing variable names or literals as special characters such
as $ so that code clones only having different variables names
or literals can be detected. Then, hash values are calculated
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Fig. 3: Code clone tracking in CCT (the revision number corresponds
to Figure 1.)

based on strings in normalized blocks (STEP 4 in Figure 2).
Finally, blocks with the same hash value are regarded as a set
of code clones (STEP 5 in Figure 2). The minimum length of
tokens is set to 30 in this study. All the code clones in each
revision are identified by applying the above processing to all
the code fragments.

4) Tracking code clones: In the code clone tracking pro-
cess, in the first place, hash values of all the blocks in the first
revision are compared each other and blocks with the same
hash values are packed as a clone set. As illustrated in Figure
3, hash values of clone sets are compared in a sequential order.
If a hash value of a clone set in one revision is equal to that
after the revision, the two clone sets are linked each other.
Linked clone sets between different revisions define the child-
parent relationships. At this moment, numbers of elements
(clones) in a clone set are also checked to know if they are
increased, decreased, or same. If a clone set with a equal hash
value cannot be found in a child revision, tracking the clone
set is terminated. For instance in Figure 3, tracking the clone
set with 10 (hash value) is terminated at Rev.. However, only
comparing hash values before/after one revision can easily
fail to track. Even if hash values do not match before/after
one revision, clone sets sometimes can be tracked with the
similarity of CRD (Clone Region Descripter) [7]. For instance,
the hash value (10) of the clone set in Rev.2 changed to 20
in Rev.4, but it can be linked using the similarity of CRD
(Similarity=0.9 in this study). As with [9], CCT also uses
the similarity of CRD to track clone sets between different
revisions.

B. Associating Code Clones with Developers and Issue reports

In addition to the feature for tracking code clones in a DVCS
repository, CCT associates tracked code clones with involved
developers and related issues.

1) Associating clones with involved developers: Developers
who involved in creating and reusing code clones are (1) iden-
tified, (2) classified into creators who created original code
clones, users who reuse existing clones at different places,
modifier who modified clones without hash value changes,



TABLE I: Dataset obtained by using CCT

(∗) The total number of developers includes developers who have never changed code clone but have changed other parts of source code.
Project RxJava c:geo Jackson databind

Analysis period 2014/08/30 2011/07/11 2011/12/23
∼2016/06/29 ∼2016/07/21 ∼2016/07/21

Num. of revisions 1,397 9,821 3,260

Num. of developers
Total (∗) 73 107 114

Developers who changed clones to fix issues 18 28 17
Developers who just changed clones 17 27 11

Num. of clone sets
Total 289 2,660 1,610

Clone sets related to issues 104 2,008 1,223
Clone sets not related to issues 185 652 387

Num. of reported issues
Total 1,892 5,849 1,307

Issues with clone changes 35 405 241
Issues without clone changes 1,857 5,444 1,066

and eliminators who deleted clones, and (3) associated with
revisions by using committers’ ID in commit logs.

2) Identifying bug-induced revisions: CCT has a feature
to apply the SZZ algorithm [10] to a issue tracking system
such as Bugzilla and Jira. Working together with a issue
tracking system, CCT can identify developers who induced
bugs, i.e., developers are associated with issue reports and
related revisions.

3) Associating clones with issue reports: Based on the
result of applying SSZ to an issue tracking system, it can
identify if file changes to resolve an issue result in clone
changes. By linking clone changes to reported issues, code
clones, developers and reported issues are associated each
other in order to support a deep analysis on the process in
creating and reusing code clones.

III. A CASE STUDY ON DEVELOPERS’ INTERACTIONS

This section describes a case study where CCT is applied to
analyze the relationship between developers’ interactions and
software quality in a clone change history.

A. Goal and Motivation

It is well-known that interactions among developers have a
close relation to software quality. [11] found that there is latent
close sub-communities in a large-scale successful OSS project
and particular developers belonging to the sub-communities
are involved in changes to the same source files. [12] revealed
that source files co-authored by unspecific multiple developers
likely have more defects than when source files are authored by
a single developer. The two studies above were not contradict
to each other, but they indicated that active interactions among
developers have an impact on software quality. While [11],
[12] investigated interactions among developers in file level
changes, [8] focused on clone level changes. [8] analyzed the
differences of inconsistent changes and related bugs between
single-authored and multi-authored clones and showed that
there are no clear differences between them.

The case study aims at continuing this line of work to deeply
understand the impact of interactions among developers on
code clone changes and software quality. Although [8] only
counted the number of developers involving in co-authored
clone changes, we are more interested in looking at the

interaction side in clone changes and we also would like to
demonstrate CCT is useful for the case study.

B. Dataset

In the case study, interactions among developers involving in
code clone changes are analyzed. We collected data from three
active open source projects (RxJava, c:geo, Jackson databind)
on GitHub2. Table I shows our dataset obtained by using CCT.
Please note that “issue” in Table I does not only mean a
particular type of issue such as “bug” but it also includes
“improvement”, “enhancement” and so forth since a project on
GitHub can freely tag an issue to be managed and/or resolved
in the project. In the case study we do not distinguish issue
types, but in the future we need to manually read and classify
issues for further analyses.

From Table I, we can confirm that many of changes to code
clones (i.e., added/modified/deleted code clones) are made to
resolve issues. For instance, c:geo has 2,660 clone sets in total
and they have changed 2,008 clone sets to resolve issues.
On the other hand, we can also confirm that not so many
issues are related to clone changes. Jackson databind has issues
associated with clone changes at a higher rate than other two
projects, but it is only 18.3% (241/1,307).

C. Analysis

In the case study, interactions among developers in changing
code clones are visualized and analyzed using a social network
analysis tool so called Pajek3 as the following procedure.

1) Separating issue related clone sets from other clone sets:
First, clone sets associated with issues and clone sets not
associated with issues are separately identified by CCT.

2) Identifying developers who involved in clone changes:
Next, developers who were involved in clone changes
(add/modify/delete) are identified by CCT. At the same time,
for the comparison, developers who were involved in not-clone
changes are also identified.

3) Creating networking data: Using the above information
obtained by using CCT, network data in Pajek data format
is created through associating clone sets with developers
involved in clone changes.

2https://www.github.com/
3Pajek, http://vlado.fmf.uni-lj.si/pub%20/networks/pajek/



(a) Issue related (Density: 0.603) (b) Not Issue related (Density: 0.394)

Fig. 4: Code clones and developers (RxJava)

(a) Issue related (Density: 0.614) (b) Not Issue related (Density: 0.529)

Fig. 5: Interactions among developers (RxJava)

(a) Issue related (Density: 0.891) (b) Not Issue related (Density: 0.333)

Fig. 6: Code clones and developers (c:geo)

(a) Issue related (Density: 0.597) (b) Not Issue related (Density: 0.351)

Fig. 7: Interactions among developers (c:geo)

4) Visualizing relationships between clone sets and develop-
ers: The network data created in the previous step is visualized
as an undirected graph to understand relationships between
clone sets and developers.

5) Visualizing interactions among developers: The network
data is alternatively visualized as an undirected graph to
understand interactions among developers who changed the
same clone sets.

D. Results

As a result of running CCT on a Windows server with 6
core CPU (2.5GHz) and 64 GB memory, the time to detect
code clones and to track them were respectively within an
hour for a Git repository of each project. Although we only
checked tracking results of RxJava manually, the failure rate
of code clones tracking was 10.18%. Based on the previous
study [9] of a code clone tracking method, this failure rate is
considered not so bad.



(a) Issue related (Density: 0.855) (b) Not Issue related (Density: 1.223)

Fig. 8: Code clones and developers (Jackson databind)

(a) Issue related (Density: 0.235) (b) Not Issue related (Density: 0.231)

Fig. 9: Interactions among developers (Jackson databind)

Figure 4 ∼ 9 show results of visualization using Pajek.
In all the visualizations, red, green and yellow nodes mean
clone sets related to issues, clone sets not related to issues,
and developers respectively. Figure 4, 6, and 8 visualize the
relationships between clone sets and developers involved in
clone changes by connecting developers who changed clones
to changed clone sets as edges. Two visualizations are prepared
to compare a network in which developers changed issue
related clone sets with a network in which developers just
changed clone sets not associated with issues. Figure 5, 7,
and 9 focus to visualize developers’ interactions only. They are
created by connecting developers who have changed the same
clones set as edges. Interactions among developers means they
have collaboratively created/changed/reused the same clone
sets.

The score of network density is put down with the sub-
captions in each figure. The network density is calculated by
dividing connected edges by potentially connectable edges in
a graph. The higher density in Figure 4, 6, and 8 indicates
developers changed many clone sets in the past, while the
lower density indicates developers were only involved in
particular clone changes. The higher density in Figure 5, 7,
and 9 indicates developers changed the same clone sets, while
the lower density indicates developers tend to change separate
clone sets. The next section discusses the visualization results
and usefulness of CCT.

IV. DISCUSSIONS

A. Visualization result (c:geo)

In what follows we only discuss the visualization result for
c:geo due to the page limitation, but we also observed similar
trends in RxJava and Jackson databind.

From Table I, we can confirm that c:geo has the largest
number of revisions and clone sets among the three projects.
Although it is difficult to visually understand the network
structure from Figure 6 (a), several, particular developers were
involved in most of issue related code clones and therefore the
network density in Figure 6 (a) is very high (0.891). Compared
with Figure 6 (a), the structure of Figure 6 (b) is not so
dense (0.333). Developers seem to separately change clone
sets which is not related to issues.

The same thing can be observed from Figure 7 (a) and (b).
Although the network density in Figure 7 (a) is much lower
(0.597) than Figure 6 (a), it is because particular developers
in the center of Figure 6 (a) dedicated their efforts to change
most clone sets to collaboratively resolve issues and other
developers seem to help them once or twice. On the other
hand, the network density in Figure 7 (b) is approximately
same (0.351) as Figure 6 (b). Developers seem not to need
tight collaborations each other to change clone sets if the
changes are not related to resolve issues.

The result is easy to understand intuitively. Code clones
are widely spread among various source files in a large-
scale software product. Changes to code clones to resolve an
issue have an great impact on issue-fixing tasks and require
developers to understand the whole structure of the product.
In c:geo (and also in RxJava and Jackson databind), a small
number of particular developers seem to have a complete
picture of the product and play an important role as gatekeeper
to sustain software quality in changing code clones.

B. Potential of CCT

In this case study we just visualized and qualitatively
analyzed relationships between code clones in systems and
involved developers and interactions among developers in



changing code clones, based on the dataset obtained by using
CCT. Since CCT is designed to identify and trace code clones
for the entire revisions and to associate involved developers
and issues with clone changes, it can be also used for time
series analysis and quantitative analysis. Figure 4 ∼ 9 only
show an overview of whole structures in each project, using
all dataset obtained by CCT at a time. In the near future,
we would like to further conduct case studies to much more
precisely capture social/human factors in the clone propagation
process through time series analysis and quantitative analysis.

V. SUMMARY AND FUTURE WORK

In this paper we proposed a code clone tracking tool called
CCT (Code Clone Tracer). We also reported our pilot case
study on interactions among developers who has been involved
in creating and reusing code clones, based on the dataset
obtained by applying CCT to there open source projects’
repositories. We found that a small number of particular devel-
opers dedicated their efforts to resolve most of reported issues
resulting in clone changes. Since the case study in this paper is
our first trial to deeply understand how code clones should be
appropriately managed and maintained for an evolving system,
who should most care about clone changes and so forth, we
will continue to apply CCT to more repositories and analyze
the clone propagation process in detail.
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