
What Are the Perception Gaps Between
FLOSS Developers and SE Researchers?

A Case of Bug Finding Research

Yutaro Kashiwa(B), Akinori Ihara, and Masao Ohira

Wakayama University, Wakayama, Japan
kashiwa.yutaro@g.wakayama-u.jp,{ihara,masao}@sys.wakayama-u.ac.jp

Abstract. In recent years, many researchers in the SE community have
been devoting considerable efforts to provide FLOSS developers with a
means to quickly find and fix various kinds of bugs in FLOSS products
such as security and performance bugs. However, it is not exactly sure
how FLOSS developers think about bugs to be removed preferentially. AQ1

Without a full understanding of FLOSS developers’ perceptions of bug
finding and fixing, researchers’ efforts might remain far away from FLOSS
developers’ needs. In this study, we interview 322 notable GitHub devel-
opers about high impact bugs to understand FLOSS developers’ needs
for bug finding and fixing, and we manually inspect and classify devel-
opers’ answers (bugs) by symptoms and root causes of bugs. As a result,
we show that security and breakage bugs are highly crucial for FLOSS
developers. We also identify what kinds of high impact bugs should be
studied newly by the SE community to help FLOSS developers.

Keywords: Open source software · High impact bug · Interview

1 Introduction

The importance of FLOSS is increasing day by day, not only for personal use
but also for enterprises to incorporate it into parts of their products. With the
increase in the number of FLOSS users, use cases have also been expanding.
As a result, lots of bugs are being reported to FLOSS projects. In the field of
software engineering, many methods have been proposed to help FLOSS devel-
opers predict faults in modules, localize and repair faults in source code, and
so on. However, these methods are too diverse for FLOSS developers to follow
and effectively adapt to their projects as needed. Although several studies [28]
provided a systematic review to mitigate the difficulty in understanding existing
methods, they are neither beyond grouping existing studies nor necessarily in
line with FLOSS developers’ needs for support. Ideally speaking, we should try
to thoroughly understand which bugs cause the most trouble for FLOSS devel-
opers and propose solutions to fix the bugs effectively and efficiently. In this

c⃝ IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 1–14, 2019.
https://doi.org/10.1007/978-3-030-20883-7_5

A
u

th
o

r 
P

ro
o

f



2 Y. Kashiwa et al.

study, we try to reveal the gap between the way that FLOSS developers and
researchers perceive bug finding and fixing, through interviews with 322 notable
GitHub developers. In the interviews, we do not directly ask the developers about
what troubleshooting tools are highly in-demand, but instead we ask them about
what kinds of bugs causes them severe troubles, in order to enable us to precisely
understand the problems they face. After the interviews, we discuss what kinds
of high impact bugs are able to be solved or not by existing studies, in order
to provide researchers with insights to come up with new solutions. This work
is separate from general bug categorizations, and to the best of our knowledge,
our work is the first bug categorization focusing on only high impact bugs. In
this paper, we address the following research questions;

RQ1: What kinds of high impact bugs are mainly considered high
impact by FLOSS developers?

RQ2: What kinds of high impact bugs do FLOSS developers encounter
most frequently?

RQ3: What kinds of high impact bugs should be studied newly by the
SE community in order to support FLOSS developers?

Our contributions to the study are as follows;

– We revealed symptoms and causes of bugs considered high impact by FLOSS
developers, through interviews and manual inspections of bug reports.

– For FLOSS developers, we identified which kinds of high impact bugs are
supported by previous studies.

– For researchers, we showed the area where FLOSS developers’ needs are still
not fulfilled.

2 High Impact Bugs

Over the past two decades, the SE community have dedicated considerable efforts
to help software developers to predict faults in modules, localize and repair
faults in source code, and so on. Although the existing, traditional studies had
not thoroughly considered the characteristics nor the impacts of bugs, in recent
years they began to tackle with the impacts of bugs on users and the development
process. In what follows, we introduce some existing studies on finding and fixing
high impact bugs.

A Security bug [8] can cause serious problems which often impacts on uses
of software products directly. Since Internet devices (e.g., smartphones) usage
is increasing every year, security issues of software products are of interest to
many people. In general, security bugs are fixed as soon as possible.

A Performance bug [22] is defined as “programming errors that causes sig-
nificant performance degradation.” The performance degradation contains poor
user experience, laggy application responsiveness, lower system throughput, and
waste computational resources [18]. [22] showed that a performance bug needs
more time to be fixed compared with a non-performance bug.

A Breakage bug [30] is a type of functional bug which is introduced into a
product when the source code is modified to add new features or to fix existing

A
u

th
o

r 
P

ro
o

f



What Are the Gaps Between FLOSS Developers and SE Researchers? 3

bugs. Though it is well-known as regression, a breakage bug mainly focuses
on regression in functionalities. A breakage bug causes problems which make
available functions in one version unusable after releasing newer versions.

A Blocking bug [7] is a bug that prevents other bugs from being fixed. It
is often caused due to a dependency relationship among software components.
Since a blocking bug inhibit developers from fixing other dependent bugs, it can
highly impact on developers’ task scheduling since a blocking bug takes more
time to be fixed [7] (i.e. a developer would need more time to fix a blocking bug
and other developers need to wait for being fixed to resolve the dependent bugs).

A Surprise bug [30] is a new concept of software bugs. It can disturb the
workflow and/or task scheduling of developers since it appears at unexpected
times (e.g., bugs detected in post-release) and locations (e.g., bugs found in files
are rarely changed in pre-release). As a result of a case study of a proprietary,
telephony system which has been developed for 30 years, [30] showed that the
co-changed files and the amount of time between the latest pre-release date and
the release date can be good indicators of predicting surprise bugs.

A Dormant bug [4] is also a new concept on software bugs and is defined
as “a bug that was introduced in one version (e.g., Version 1.1) of a system, yet
it is not reported until after the next immediate version (i.e., a bug is reported
against Version 1.2 or later).” [4] showed that 33% of the reported bugs in
Apache Software Foundation projects were dormant bugs and were fixed faster
than non-dormant bugs.

3 Study Design

3.1 Overview

In this study, we e-mail and ask notable developers in GitHub [9] to answer a
questionnaire about high impact bugs. After aggregating collected responses, we
show the developers’ demographic information (Q1), and the distribution of the
bugs that are considered high impact (Q2-1). As the questionnaire includes an
open question (Q2-2) to tell us actual bug reports which caused troubles in the
past, we manually inspect the bug reports and categorize them by symptoms.

3.2 Participant Selection

In order to select notable developers to invite to our interview in this study, we
use contribution which represents the amount of the developer’s commit activity
to GitHub repositories and can be calculated with GitHub API [10]. First, we
make a list of all repositories in GitHub and calculate the total number of con-
tributions for each repository. Note that we only calculate contributions for the
most committed repositories if the repositories have the same name, since forked
repositories partly (sometimes largely) include the same commits from original
repositories and we need to avoid multiple counts for the same contributions by
the same developer. Next, the total contributions of each developer is calculated

A
u

th
o

r 
P

ro
o

f



4 Y. Kashiwa et al.

based on the selected repositories above, and we choose candidates who mark
over 100 contributions. Finally, we sent e-mails to 22,228 candidate developers
to ask them to participate in our interview.

3.3 Questionnaire

We prepared Google Forms for our interview which consisted of three questions
to know the developers demography (Q1), one closed question to reveal a dis-
tribution of high impact bugs considered important by developers (Q2-1), and
one open question to collect and further analyze actual reports on high impact
bugs (Q2-2). The questionnaire has six more questions, but in this paper, we
only focus on the five questions above due to the space limitations.

[Q1. Profile]

Q1-1 Your main project
Q1-2 Your experience with FLOSS development
Q1-3 Your motivation to participate in FLOSS development

[Q2. High impact bugs]

Q2-1 What kind of bug would be much more important to be fixed?
– a bug threatening systems’ security (Security bug)
– a bug deteriorating system’s performance (Performance bug)
– a bug blocking other bug fixes (Blocking Bug)
– a bug found in unexpected timing and location (Surprise bug)
– a bug introduced in older releases and found in a newer releases (Dormant

bug)
– a bug introduced in a newer release and breaking functions of older

releases (Breakage bug)
– others [free text]

Q2-2 Please tell us high impact bug(s) you encountered in the past.

3.4 Categorization of Bug Symptoms

Based on the responses of Q2-2, we collect actual bug reports from developers’
projects and confirm the symptoms of the bugs, in order to discuss what tech-
niques have been already proposed or that will be required to find and fix those
high impact bugs. The first and second authors independently and manually
inspect symptoms of actual high impact bugs and classify them by the card sort
technique [23]. After the independent classification, the two authors discuss each
classification result together and merge the results by mutual consent to make
one classification. Here, the inspectors include one Ph.D. student (first author),
who worked at a software company for two years as a full-time developer, and
one professor who has been studying FLOSS development over ten years.

A
u

th
o

r 
P

ro
o

f



What Are the Gaps Between FLOSS Developers and SE Researchers? 5

4 Interview and Classification Results

4.1 Developer Demography (Q1)

As we described earlier, we invited 22,228 developers to join our interview. Dur-
ing the two weeks interview period, we got responses from 322 developers. Table 1
shows the product domains where the developers participated. We can see “web
application” is the most popular domain (7%) but it does not stand out from the
others. The product domains spread across a wide area. We can assume that the
results of our interviews reflect a wide range of situations across FLOSS develop-
ment. Table 2 shows the developers’ experience with FLOSS development. The
majority of the developers have over five years experiences. It is no surprise
because we only invite active developers who have made at least over 100 com-
mits to GitHub repositories. Table 3 shows developers’ motivations to FLOSS
development. 59% (126 + 64) of the developers contribute to FLOSS projects as
part of work.

Table 1. Product domains where GitHub developers join (Q1-1)

Domain # % Domain # % Domain # %

Web application 22 7% Database 9 3% Machine learning 5 2%

Development tool 19 6% Network server 9 3% UI 5 2%

Analysis 19 6% Messaging tool 9 3% Mobile app 5 2%

Language & compiler 17 5% Education 8 2% Desktop system 4 1%

OS 15 5% Simulator 7 2% Mail 4 1%

Graphic 14 4% Finance 7 2% Browser 3 1%

Game 13 4% Resource monitoring 7 2% Others 37 11%

Programming tool 12 4% Image editor 6 2% No answer 34 11%

Blog 11 3% Network tool 6 2%

Embedded OS 9 3% Security tool 6 2% Total 322 100

Table 2. Experience with
FLOSS development (Q1-2)

Experience Developers
More than five years 213
Three to five years 63
One to three years 45
Less than one year 1

Table 3. Motivation to
participate in FLOSS
development (Q1-3)

Motivation Developers
Hobby 111
Work 126
Both 64
Other 21

Table 4. A distribution of
high impact bugs in Q2-1

High impact bugs # %
Security bug 171 53%
Breakage bug 72 22%
Performance bug 20 6%
Blocking bug 16 5%
Dormant bug 12 4%
Surprise bug 7 2%
Others 24 7%

A
u

th
o

r 
P

ro
o

f



6 Y. Kashiwa et al.

4.2 RQ1: What Kinds of High Impact Bugs Are Mainly Considered
High Impact by FLOSS Developers?

In Q2-1, we asked the developers to select one of the six kinds of high impact
bugs which are introduced in the previous section and have been well studied in
the SE community. Table 4 shows the responses from the developers. We can see
the FLOSS developers from GitHub attach greater importance on security bugs
(53%) and breakage bugs (22%). It was unexpected for us that the other four
bugs attract less attention from the FLOSS developers. It partly indicates the
perception of gaps between researchers and FLOSS developers. Some researchers
in the SE community might misunderstand FLOSS developers’ actual needs.

Researchers in the SE community have been studying to help developers find
and fix bugs especially in terms of impacts on users’ satisfaction and during the
development process (release) [13]. Although high impact bugs have been studied
individually so far, it was not clear if FLOSS developers are mostly concerned
with particular high impact bugs. From the result of Q2-1, we now answer RQ1
as follows.

Answer to RQ1: Researchers have been dedicating to provide a means to find
and fix a variety of high impact bugs, but FLOSS developers mainly emphasize
a focus on security and breakage bugs.

4.3 RQ2: What Kinds of High Impact Bugs Do FLOSS Developers
Encounter Most Frequently?

In Q2-2, we asked the developers to describe the high impact bugs they have
encountered in the past. Many of the developers described characteristics of high
impact bugs in the free text format and also gave us direct links to actual bug
reports which present symptoms discussed among developers and users.

Table 5 shows symptoms of bugs considered high impact by the respondents.
In the table, we count multiple times if a developer described several high impact
bugs. The percentage in the table is the ratio of developers’ answers in each cate-
gory, but the total percentage does not become 100% due to the above reason. As
we described earlier, we manually inspected and categorized the information on
high impact bugs by symptom. In what follows, we summarize the classification
result.

We had 249 valid answers from 192 developers about symptoms of high
impact bugs which actually get FLOSS developers in trouble in the past. In
Table 5, the most common symptom was “unexpected processing” responded
by 17% of developers (42 cases). As regards “unexpected processing”, we could
confirm less in common with bug reports. They ranged from different calcula-
tion results to unexpected rendering. The next most frequent was “sudden stop”
responded by 16% of developers (39 cases). The corresponding bug reports shown
by the developers suggested us that it often happened due to null pointer excep-
tion, run-time error exception, segmentation error, and overflow. Although the

A
u

th
o

r 
P

ro
o

f



What Are the Gaps Between FLOSS Developers and SE Researchers? 7

Table 5. Symptoms described in actual bug reports

Category Subcategory Description # % Ref

Behavior Disable start Users cannot install, compile or start an

application

19 8% [1,27 ,36 ]

Never start

function

A function never start once a user clicks a

button

21 8% [5 ,30,32,34]

Sudden stop A program suddenly stops during running 39 16% [2,25 ,26 ,33]

Unexpected

processing

A program does not output or behave as

developers expected

42 17% [31,32]

Never finishing

state

A process never finish (e.g, hang up and

infinite loop)

5 2%

Unable to

login

Users cannot login a system 4 2%

Others Lack of items in display, wrong warnings,

lower user experiences etc.

8 3%

Effect Lower

performance

A program lowers performance (e.g, too large

memory usage)

13 5% [20– 22,35 ]

Damage other

systems

A program damages other systems (e.g, OS

cannot boot)

5 2%

Others Making a disk full etc. 3 1%

Security Vulnerability Security defects allow an attack to cause an

abnormal behavior

22 9% [6 ,17 ,29 ]

Unauthorized

access

An impersonating account accesses to a

server, service, or data

28 11% [12,16 ,19 ]

DDoS Massive accesses from multiple terminals

make a service unable

7 3%

Data Data loss A program deletes data in a product (e.g.,

user data and database breakage)

12 5%

Incorrect data A program produces incorrect or duplicated

data

1 0%

Development Architecture

change

It forces developers to change a architecture

or core program in a product

3 1%

Reproduce Developers cannot reproduce a reported bug 3 1%

Others Blocking other bugs fixed etc. 4 2%

Reputation Compatibility Compatibility is broken (e.g, API, hardware

and OS)

7 3%

Execution env. A product can not guarantee an execution

environment

3 1%

above two are related to “Behavior” of a program, the third and fourth most
common symptoms were “Security” concerns such as “vulnerability” and “unau-
thorized access.” About “vulnerability,” the corresponding bug reports suggested
the developers especially concerned with XSS and SQL injection attacks. The
OpenSSL problem (i.e., Heartbleed) and the hidden way of leaking user data
were included in bug reports about “unauthorized access.”

In RQ1, 53% of developers think that security is the biggest concern among
high impact bugs in the previous studies. However, the result in RQ2 shows that
the developers come across high impact bugs about Behaviour more often than
the one about security. In fact, one developer said, “Since the mentioned project
is (mostly) a client-side javascript library, security problems aren’t common.”
Based on the results here, we answer RQ2 as follows.

A
u

th
o

r 
P

ro
o

f



8 Y. Kashiwa et al.

Answer to RQ2: FLOSS developers most frequently encounter bugs relating
to behaviors such as unexpected behaviors and sudden stops. Security bugs
such as vulnerabilities and unauthorized accesses are also often encountered.

4.4 RQ3: What Kinds of High Impact Bugs Should Be Studied
Newly by the SE Community in Order to Support FLOSS
Developers?

The percentages in Table 5 are indicated by boldface if the corresponding symp-
toms account for about 80% of all the symptoms (i.e., the developers frequently
encounter the symptoms with boldface.). For the majority of the symptoms, we
surveyed existing studies which have tried to find and/or resolve the symptoms
and showed references as “Ref” in Table 5.

The percentages of the symptoms in “Behavior” category are relatively high
and these have been well-studied by the SE community [1,2,5,25–27,30–34,36].
For instance, “never start function” is well studied breakage bugs [30] so-called
regressions which disable existing functions due to additional changes to software
products. Although in the paper we did not introduce this as a high impact bug,
“unexpected processing” is well studied as a functionality bug or feature bug
[32]. “disable start” and “sudden stop” are also studied as build bugs [36] and
crash bugs [2] respectively.

As we confirmed “vulnerability” and “unauthorized access” achieved rela-
tively high attention from the developers, security bugs are also considered high
impact by researchers and have been well studied [6,12,16,17,19,29,35]. “Lower
performance” in “Effect” category is also well studied [20–22,35] as performance
bugs. However, to the best of our knowledge, there is no study on “data loss” in
“Data” category which is of relatively high concern to FLOSS developers (5%).
For instance, a bug on “data loss” in “Data” category is observed when deleting
data related to the operation under a condition. Other data loss bugs occurred
due to executing the wrong processing of multi-transaction or by using variables
not multi-threaded (e.g., HashMap in Java). In fact, for instance, loss of users’
data such as their pictures was recently reported in the update of Windows 10
[3]. We regard it is one of the perception gaps between FLOSS developers and
SE researchers and should be should be studied, allowing us to address the issue.
Based on the results here, we answer RQ3 as follows.

Answer to RQ3: Existing studies can cover FLOSS developers’ concerns
about high impact bugs, but researchers still have space to further study other
kinds of high impact bugs such as “data loss”.

A
u

th
o

r 
P

ro
o

f



What Are the Gaps Between FLOSS Developers and SE Researchers? 9

5 Discussions

5.1 Is the Current Support for High Impact Bugs Enough? How
Can We Help FLOSS Developers Fix Bugs?

Many studies focus on symptoms of bugs and observe their characteristics and
impacts [4,7,22,30]. We classified bugs based on the symptoms of high impact
bugs included in the answers from the interviews. However, it is not enough to
support fixing bugs because we can not fix them only by knowing the symptoms
of high impact bugs. In this section, similar to the classification of the symp-
toms, we classify causes of high impact bugs obtained in the answers from the
interviews. With the classification of the causes, we discuss how we can support
fixing the high impact bugs in each category.

Table 6 shows the causes of bugs considered high impact by the respondents.
Here, we had 182 valid answers including the root causes of high impact bugs
(from 142 developers ). In Table 6, the most common root cause was “insufficient
processing” reported by 35% developers (49 cases). Furthermore, we broke down
the 49 cases of “insufficient processing” and found that they consisted of 13
cases of “insufficient checks for inputs by users”, nine cases of “insufficient checks
against malicious inputs”, five cases of “insufficient null checks such as arguments
and return values”, four cases of “insufficient authority checks “(e.g., database),
and “others” (16 cases). The second and third most common root causes were
“problem in 3rd party” and “change in 3rd party” respectively which relate to
3rd party libraries and systems.

Figure 1 depicts the relationship between symptoms and causes. The line
width shows how symptoms and causes have strong relationships. For ease of read-
ing graph, we only show the relationships that appeared more than two-times
(which account for 52% of all the relationship). For further information, we pro-
vide the data and the figures showing all the relationships on our online appendix
[24]. Looking into the causes of “unexpected processing”, the most frequent causes
are “insufficient processing” (11 cases), and “problem in 3rd party” (5 cases), and
“usage” (4 cases) are following. Furthermore, we investigated the detail of the bugs
and found that nine of 11 cases were happened via regular usages and two cases
were occurred by abnormal usage. These bugs should be found by unit test, or
developers can utilize many studies (e.g, test case generation) to find them. “Sud-
den stop” is also caused by “insufficient processing” (11 cases). Eight of the 11
cases are caused by insufficient checks for inputs by users or by insufficient null
checks, which are able to be applied by binary analysis [25].

The causes of both “disable start” and “never start function” are related on
3rd parties. The main causes of “disable start” are “changes in 3rd party”. We
found two interesting answers indicating difficulty in finding the bugs are brought
by “changes in 3rd party”. One developer said, “It was just to update dependen-
cies but finding bug was hard”. Moreover, another developer said, “Because there
are too many packages in the repository, nobody can keep an eye on all the pack-
ages”. Even though developers roughly know that the causes of the bugs are
caused by changes in 3rd parties, it is difficult to specify which changes by third

A
u

th
o

r 
P

ro
o

f



10 Y. Kashiwa et al.

Table 6. Root causes described in actual bug reports

Category Subcategory Description # %

Design Usage A program usage unanticipated by
developers (e.g., no network)

12 7%

Architecture An architecture has an inappropriate
algorithm etc.

2 1%

Wrong processing A program has incorrect processing 10 5%

Superfluous processing A program have superfluous processing 3 2%

Insufficient processing A program needs another processing
(e.g., null checks)

39 21%

Others Incorrect encryption etc. 6 3%

Implement Exception handling A program throws a wrong Exception
or cannot catch it

11 6%

Condition A program has wrong conditions (e.g.,
for and if)

7 4%

Usage of variables A program use wrong variables or data
type

5 3%

Method use Developers incorrectly use methods in
their product or 3rd party library

8 4%

Memory management A program cannot appropriately
manage memory

9 5%

Others Wrong implementation of async, data
or race competition etc.

6 3%

Operation and
Maintenance

Problem in 3rd party A program is affected on a problem in
3rd party library or systems

21 12%

Changes in 3rd party A program is affected on a change in
3rd party library or systems

13 7%

Execution env. Developers did not check if a program
can run on some OS or shells

9 5%

Change effects A change in the module affects on
other modules

5 3%

Setting Developers use a wrong setting (e.g,
buffer size and database access
authority)

5 3%

Others Incorrect document, refactoring, or
operation etc.

11 6%

party products created the bug. Although Ma [15] et al. investigated common
practice to fix cross-project correlated bugs in the GitHub scientific Python
ecosystem, there are no approaches to specify the root causes of cross-project
bugs.

“Vulnerability” and “unauthorized access” are mostly caused by “insufficient
processing” (6 cases each). Among the subcategories of “insufficient processing”,
the most common causes are derived from insufficient checks against malicious
inputs (3 cases each). Fuzzing techniques [11,14] are able to be used to find the
insufficient checks.

A
u

th
o

r 
P

ro
o

f



What Are the Gaps Between FLOSS Developers and SE Researchers? 11

Fig. 1. Relationships between symptoms (left axis) and causes (right axis)

The cause of “data loss” is “insufficient processing”, which can be broken
down into three different cases: “insufficient checks for input by users”, “insuf-
ficient checks against malicious inputs”, and “others”. Because of no similari-
ties, we could not find any approaches to address “data loss” bugs, therefore it
requires further work in the future.

5.2 Threats to Validity

Internal validity: The categorization of Table 5 and 6 may not be perfect. We
have a good deal of knowledge about software, but we also recognize the limi-
tations of our knowledge about specific domains. We also might bias in creating
the category. External validity: Although the developer demography consists
of developers working in a wide range of product domains, a judgment if a bug
is high impact or not would depend on a product domain. Construct validity:
To avoid bias in the developers responses, we asked them about high impact bugs
without providing rigorous definitions of high impact bugs. Attitudes towards
high impact bugs might be different among the developers.

6 Conclusion and Future Work

In this study, we interviewed 322 notable GitHub developers to reveal the per-
ception gaps between FLOSS developers and researchers on bug finding and
fixing. We manually inspected and classified actual bug reports which were pre-
sented and considered high impact by the developers. As a result, we concluded
that security and breakage bugs are highly important for FLOSS developers. We
also identified “data loss” bugs should be studied newly by the SE community
to support FLOSS developers. Based on the bug report data presented by the
developers in this study, we plan to investigate actual impacts of bugs on the
size of source code change, resolution time, and so forth in the future.

A
u

th
o

r 
P

ro
o

f



12 Y. Kashiwa et al.

Acknowledgment. We really appreciate the cooperation of developers in GitHub
in completing our survey. This research is conducted as part of Grant-in-Aid for
Japan Society for the Promotion of Science Research Fellow and Scientific Research
(JP17J03330, JP17H00731, JP18K11243).

References

1. Abate, P., Di Cosmo, R., Gesbert, L., Le Fessant, F., Treinen, R., Zacchiroli, S.:
Mining component repositories for installability issues. In: Proceeding of the 12th
Working Conference on Mining Software Repositories, pp. 24–33 (2015)

2. An, L., Khomh, F., Guéhéneuc, Y.G.: An empirical study of crash-inducing com-
mits in Mozilla Firefox. Softw. Qual. J. 26(2), 553–584 (2018)

3. Ars Technica. https://arstechnica.com/gadgets/2018/10/microsoft-suspends-
distribution-of-latest-windows-10-update-over-data-loss-bug/

4. Chen, T.H., Nagappan, M., Shihab, E., Hassan, A.E.: An empirical study of dor-
mant bugs. In: Proceedings of the 11th Working Conference on Mining Software
Repositories, pp. 82–91 (2014)

5. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, pp. 349–360 (2014)

6. Gao, F., Wang, L., Li, X.: BovInspector: automatic inspection and repair of buffer
overflow vulnerabilities. In: Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, pp. 786–791 (2016)

7. Garcia, H.V., Shihab, E.: Characterizing and predicting blocking bugs in open
source projects categories and subject descriptors. In: Proceedings of the 11th
Working Conference on Mining Software Repositories, pp. 72–81 (2014)

8. Gegick, M., Rotella, P., Xie, T.: Identifying security bug reports via text mining:
an industrial case study. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, pp. 11–20 (2010)

9. GitHub. https://github.com/
10. GitHub API. https://developer.github.com/v3/
11. Jiang, B., Liu, Y., Chan, W.K.: ContractFuzzer: fuzzing smart contracts for vulner-

ability detection. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pp. 259–269 (2018)

12. Kafali, O., Jones, J., Petruso, M., Williams, L., Singh, M.P.: How good is a security
policy against real breaches? A HIPAA case study. In: Proceedings of the 39th
International Conference on Software Engineering, pp. 530–540 (2017)

13. Kashiwa, Y., Yoshiyuki, H., Kukita, Y., Ohira, M.: A pilot study of diversity in
high impact bugs. In: Proceedings of the 30th International Conference on Software
Maintenance and Evolution, pp. 536–540 (2014)

14. LibFuzzer. https://llvm.org/docs/LibFuzzer.html
15. Ma, W., Chen, L., Zhang, X., Zhou, Y., Xu, B.: How do developers fix cross-project

correlated bugs? A case study on the GitHub scientific python ecosystem. In: Pro-
ceedings of IEEE/ACM 39th International Conference on Software Engineering,
pp. 381–392 (2017)

16. Mathis, B., Avdiienko, V., Soremekun, E.O., Bohme, M., Zeller, A.: Detecting
information flow by mutating input data. In: Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, pp. 263–273 (2017)

A
u

th
o

r 
P

ro
o

f



What Are the Gaps Between FLOSS Developers and SE Researchers? 13

17. Meng, N., Nagy, S., Yao, D., Zhuang, W., Argoty, G.A.: Secure coding practices
in Java: challenges and vulnerabilities. In: Proceedings of the 40th International
Conference on Software Engineering, pp. 372–383 (2018)

18. Molyneaux, I.: The Art of Application Performance Testing: Help for Programmers
and Quality Assurance, 1st edn. O’Reilly Media Inc., Newton (2009)

19. Near, J.P., Jackson, D.: Finding security bugs in web applications using a catalog
of access control patterns. In: Proceedings of the 38th International Conference on
Software Engineering, pp. 947–958 (2016)

20. Nguyen, T.H.D., Nagappan, M., Hassan, A.E., Nasser, M., Flora, P.: An industrial
case study of automatically identifying performance regression-causes. In: Proceed-
ings of the 11th Working Conference on Mining Software Repositories, pp. 232–241
(2014)

21. Nistor, A., Chang, P.C., Radoi, C., Lu, S.: CARAMEL: detecting and fixing per-
formance problems that have non-intrusive fixes. In: Proceedings of the 37th Inter-
national Conference on Software Engineering, vol. 1, pp. 902–912 (2015)

22. Nistor, A., Jiang, T., Tan, L.: Discovering, reporting, and fixing performance bugs.
In: Proceedings of the 10th Working Conference on Mining Software Repositories,
pp. 237–246 (2013)

23. Nurmuliani, N., Zowghi, D., Williams, S.: Using card sorting technique to classify
requirements change. In: Proceedings of 12th International Requirements Engi-
neering Conference, pp. 224–232 (2014)

24. Online Appendix. https://github.com/YutaroKashiwa/OSS2019
25. Pham, V.T., Ng, W.B., Rubinov, K., Roychoudhury, A.: Hercules: reproducing

crashes in real-world application binaries. In: Proceedings of the 37th International
Conference on Software Engineering, vol. 1, pp. 891–901 (2015)

26. Seo, H., Kim, S.: Predicting recurring crash stacks. In: Proceedings of the 27th
International Conference on Automated Software Engineering, p. 180 (2012)

27. Seo, H., Sadowski, C., Elbaum, S., Aftandilian, E., Bowdidge, R.: Programmers’
build errors: a case study (at Google). In: Proceedings of the 36th International
Conference on Software Engineering, pp. 724–734 (2014)

28. Shafiq, H., Arshad, Z.: Automated debugging and bug fixing solutions: a systematic
literature review and classification, M.Sc thesis, Blekinge Institute of Technology
(2014)

29. Shar, L.K., Beng Kuan Tan, H., Briand, L.C.: Mining SQL injection and cross site
scripting vulnerabilities using hybrid program analysis. In: Proceedings of the 35th
International Conference on Software Engineering, pp. 642–651 (2013)

30. Shihab, E., Mockus, A., Kamei, Y., Adams, B., Hassan, A.E.: High-impact defects:
a study of breakage and surprise defects. In: Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, pp. 300–310 (2011)

31. Sullivan, M., Chillarege, R.: Software defects and their impact on system
availability-a study of field failures in operating systems. In: Proceedings of the
Fault-Tolerant Computing: The Twenty-First International Symposium, pp. 2–9
(1991)

32. Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., Zhai, C.: Bug characteristics in open
source software. Empir. Softw. Eng. 19(6), 1665–1705 (2014)

33. Tan, S.H., Dong, Z., Gao, X., Roychoudhury, A.: Repairing crashes in Android
apps. In: Proceedings of the 40th International Conference on Software Engineer-
ing, pp. 187–198 (2018)

A
u

th
o

r 
P

ro
o

f



14 Y. Kashiwa et al.

34. Tan, S.H., Roychoudhury, A.: Relifix: automated repair of software regressions. In:
Proceedings of the 37th International Conference on Software Engineering, vol. 1,
pp. 471–482 (2015)

35. Zaman, S., Adams, B., Hassan, A.E.: Security versus performance bugs: a case
study on Firefox. In: Proceedings of the 8th Working Conference on Mining Soft-
ware Repositories, pp. 93–102 (2011)

36. Zhao, X., Xia, X., Kochhar, P.S., Lo, D., Li, S.: An empirical study of bugs in
build process. In: Proceedings of the 29th Annual ACM Symposium on Applied
Computing, pp. 1187–1189 (2014)

A
u

th
o

r 
P

ro
o

f


