
Masao Ohira
Faculty of Systems Engineering
Wakayama University, JAPAN

Email: masao@sys.wakayama-u.ac.jp

Hayato Yoshiyuki
Graduate School of Systems Engineering

Wakayama University, JAPAN
Email: s151054@sys.wakayama-u.ac.jp

Yosuke Yamatani
Graduate School of Systems Engineering

Wakayama University, JAPAN
Email: s151049@sys.wakayama-u.ac.jp

Abstract—In this study we focus on the misclassification of issue
reports regarding software performance in OSS development.
IEEE Std 610 [1] defines performance as “The degree to which
a system or component accomplishes its designated functions
within given constraints, such as speed, accuracy, or memory
usage.” The definition implies that there is no rigorous criteria
nor quantitative measure to detect a software performance
problem, but rather it relies on a subjective judgement. OSS
users sometimes mistakenly report a performance bug as a
request for improving software performance and sometimes
mistakenly report an improvement request for fixing a perfor-
mance bug. The misclassification of report types can impedes
the efficient bug-fix process in OSS development, since OSS
developers preferentially spend time fixing bugs which might
be improvement requests (i.e., not bugs) in reality. In this
paper we strengthen our previous study for the Apache Wicket
project by manually inspecting 1,000 bugs and 1,000 improve-
ment requests respectively to more precisely understand the
impacts of the misclassification on the bug-fix process in OSS
development.

1. INTRODUCTION

Open source software (OSS) is used not only for per-
sonal use but also for commercial products nowadays. As
OSS users including developers of commercial products
increases, a number of bugs are filed to an issue tracking
system (ITS) every day in a large-scale project [2]. In
general, any users can report a bug to ITS as an issue
report when they encounter a problem in using OSS. The
quality of a filed report often varies among users, since
their understandings of computer systems including OSS
differ among them. A good report helps developers fix a
bug quickly and correctly, but a poor report arises many
problems [3]. For instance, reproducing a bug is difficult
[4] when a user does not report the information which
is needed by OSS developers to resolve the bug. It is a
time-consuming task because the developers must ask many
questions to the user to reproduce the bug. Duplicate reports
[5] also consume developers’ time and effort. They are filed
again and again because many users do not search similar
reports which have been already resolved in the past before

reporting a bug they found. In this way, the process of fixing
bugs is sometimes far from efficient, despite a large number
of bugs must be fixed before the next release.

In this study, we focus on the misclassification of issue
reports regarding software performance. In IEEE Standard
Glossary of Software Engineering Terminology (IEEE Std
610) [1], performance is defined as “The degree to which
a system or component accomplishes its designated func-
tions within given constraints, such as speed, accuracy, or
memory usage.” The definition implies that there is no rig-
orous criteria nor quantitative measure to detect a software
performance problem, but rather it relies on a subjective
judgement. It is not so easy for every OSS user to judge if an
encountered problem is really due to a performance bug. The
misjudgments would lead to misclassify issue reports into
improvement requests. OSS users sometimes report a perfor-
mance bug as a request for improving software performance
and sometimes report a improvement request as a bug. The
misclassification of issue reports does not only degrade the
reliability of defect prediction models [6], but also impedes
the efficient bug-fix process in OSS development, since
OSS developers preferentially spend time fixing bugs which
might be improvement requests (i.e., not bugs) in reality.

In this paper we strengthen our previous study [7] where
1,000 bugs and 377 improvement requests in the Apache
Wicket project were manually inspected to find the misclas-
sification of issue reports. In this paper we use 1,000 bugs
and 1,000 improvement requests respectively to answer the
following research questions.

RQ1: What is the impact of the misclassification on the
bug-fix process?

RQ2: Why is the misclassification occurred?

In what follows, Section 2 introduces types and purposes
of issue reports managed by ITS. Section 3 describes the
methodology of our study. Section 4 shows the result of
our case study to answer the research questions. Section 5
discusses how to avoid the misclassification of issue reports.
Section 6 summarize the paper and describes our future
work.

978-1-5090-0806-3/16/$31.00 copyright 2016 IEEE
ICIS 2016, June 26-29, 2016, Okayama, Japan

TABLE 1. ISSUE TYPE IN AN ISSUE TRACKING SYSTEM

Type Purpose

Bug To manage to fix reported bugs.
Improvement To manage requests for improving software.
New Feature To manage requests or proposals for new features.
Test To manage proposed test cases.
Task To manage tasks related to a project.

2. TYPES OF ISSUE REPORTS

An issue tracking system such as Bugzilla1 and Jira2

is used not only for managing reported bugs, but also for
managing various types of information (i.e., issues) related
to an OSS project. Table 1 shows types of issues which
are reported by users and managed by ITS. Bug is used
to manage and track the information from bug reporting to
bug resolution. Improvement is used to manage requests
for enhancements and extensions of existing features. It
also includes improvement requests for concerns which are
not exposed at the time but would cause problems in the
future. New Feature manages requests and proposals for
new features and Test is for proposals of test cases. Task
is used to manage general tasks in a project. It is also used
to manage tasks that should be preprocessed before dealing
with reported bugs and improvement requests.

The type of an issue is labeled by a reporter when s/he
files an issue with ITS. It is basically used until the issue is
resolved (closed), though it is sometimes changed along the
way. As is the case with the problems of duplicate and not-
reproducible bugs reported by users who are not familiar
with software systems, a performance bug could cause a
problem since it might be mistakenly filed as Improvement
by casual users who do not have enough knowledge to judge
if it should be filed as Bug or Improvement. An issue which
is filed as Bug but should be Improvement might consume
developers’ time and effort because developers would try to
fix it preferentially. In contrast to the misclassification of
Improvement, an issue which is filed as Improvement but
should be Bug would be also problematic since an improve-
ment request would not necessarily need to be addressed
quickly, that is to say, a performance bug might be led for
later or be missed. These potential problems motivate us
to study the misclassification of Bug and Improvement in
reporting performance problems.

3. STUDY METHODOLOGY

3.1. Selecting a Project: Apache Wicket

In this study we investigate the misclassification of
performance issue reports in the Apache Wicket project.
The project has been developing a Java framework for
Web applications since 2005. The Apache Wicket project
is selected for our study mainly because of the following

1. Bugzilla: https://www.bugzilla.org

2. Jira: https://www.atlassian.com/software/jira

TABLE 2. NUMBER OF BUGS AND IMPROVEMENTS IN WICKET (AS OF

JANUARY 2016)

Type Issues

Bug 3,728
Improvement 1,703

TABLE 3. DIFFERENCES OF DATASET BETWEEN PREVIOUS STUDIES

[8] [7] AND THIS STUDY

Issues [8] [7] This paper

Number of Bugs 663 1,000 1,000
Number of Improvements 337 337 1,000

TABLE 5. PERFORMANCE ISSUES INCLUDED IN OUR DATASET

Type Issues Perf. Issues

Bug 1,000 61
Improvement 1,000 59

reasons: (1) Wicket is a part of a development environment
for web application developers and therefore developers
would attach importance to performance. (2) Users would
attach importance to performance of Web applications cre-
ated by using Wicket. (3) Regarding a performance problem
encountered in using a Wicket-based Web application, it
would be difficult to identify if the root cause is due to
Wicket or due to a computational environment where the ap-
plication is used. Besides the above reasons, Wicket would
be an appropriate subject to be investigated since Wicket
is an Apache top-level project, has been being developed
vigorously and has sufficient data (i.e., a number of issues
resolved in the past). Table 2 shows the number of Bug and
Improvement issues filed to ITS in the Wicket project as
of January 2016.

3.2. Preparing Dataset

Issue data used in this paper is originally collected by
Ohira et al. [8] who randomly sampled 1,000 issues from
the Apache Ambari, Camel, Derby and Wicket projects re-
spectively. The original 1,000 issues for each project consist
of both Bug and Improvement issues in order to investigate
problems which highly impact on OSS development and
user satisfaction3. For each issue, types of problems (e.g.,
performance and security) are labeled manually.

In [7], issue data was added to [8] only for the Wicket
project as the dataset consisted of 1,000 Bugs. In this paper,
we further add issue data to [7] as the dataset also has
1,000 Improvements to be analyzed, in order to increase
the generality of the empirical findings in [7]. We believe
that it would be worth investigating much more misclas-
sified Improvements, because misclassifying Bug issues as
Improvement issues would lead to consume developers’ time
and effort. Table 3 shows the differences of the datasets

3. High Impact Bug Dataset: http://oss.sys.wakayama-u.ac.jp/?p=1009

TABLE 4. TYPES OF SOFTWARE MAINTENANCE ACTIVITIES [9] AND CORRESPONDING ISSUE TYPES IN THIS STUDY

Type of Maintenance Descriptions of Activities Issue Type

Corrective
Modifications of software products to correct problems or failures found
after delivery

Bug
Adaptive

Modifications of software products to adapt to changes of computational
environments (e.g., OS upgrade) as the products can be used for a long time

Perfective
Modifications of software products to improve usability, performance,
maintenability and so forth which are not problems in the current situation

Improvement
Preventive

Modifications of software products to correct potential problems after
delivery, which do not become apparent in the current situation

between previous studies [8] [7] and this study. As is the
case with the previous studies, added issue data is randomly
selected and met with the following criteria.

• An issue is resolved (i.e. not work in progress).

– Status of the issue is Resolved or Closed.
– Resolution of the issue is Fixed.

• An issue has been actually treated as Bug or Im-
provement (i.e., It is not Closed without anything).

– An issue has one or more versions in Affects
Version/s.

– An issue can be linked to a commit log which
indicates that code modifications are actually
needed for fix the issue.

3.3. Judging Misclassifications

Although some of issue reports in our dataset are labeled
as Performance which means that the issues report perfor-
mance problems, we still need to judge manually if they
should be treated as Bug or Improvement. However, as we
described earlier, there are no rigorous criteria to do so. In
order to mitigate this problem, we use the types of software
maintenance activities described in ISO/IEC 14764:2006
[9] to judge if an issue report including a performance
problem should be classified into Bug or Improvement.
Table 4 shows the types of software maintenance activities
and corresponding issue types (i.e., Bug or Improvement)
in this study. According to [9], software maintenance is
classified into four types of activities with different purposes
and goals: Adaptive, Corrective, Perfective and Preventive.

Of the four types of software maintenance activities,
the corrective and adaptive maintenance aim at resolving
problems happened by programming errors, changes of com-
putational environments, and so forth. Therefore, we can
consider that the two activities cover issues which accom-
pany concrete symptoms or signs of problems. By contrast,
the perfective and preventive maintenance aim at resolving
potential problems which are not observed in the current
situation but would be appeared in the future. That is to say,
they cover issues which should be hopefully fixed in the near
future. In this study, the corrective and adaptive maintenance
are regarded as maintenance activities for fixing Bugs and
the perfective and preventive maintenance are regarded as
maintenance activities for coping with Improvements.

TABLE 6. MAINTENANCE ACTIVITIES FOR FIXING BUG ISSUES bold
TYPES ARE MISCLASSIFIED BUG ISSUES

Type of Maintenance Issues

Corrective 51
Adaptive 4

Perfective 5
Preventive 1

Table 5 shows the number of issues with performance
problems in our dataset. 61 of 1,000 Bug issues and 59
of 1,000 Improvement issues have problems with software
performance. In other words, about 6% of issues reported
to the Wicket project relates to software performance, re-
gardless of whether they are Bug or Improvement. Based
on the above definition (Table 3), we manually review the
120 issues (61 Bugs and 59 Improvements) to identify the
misclassification of issues relating to software performance.

4. Results

4.1. Misclassification of Bug Issues

Table 6 shows a result of manual reviews for Bug
issues which are labeled as performance problems. Of the
61 Bug issues, 55 (90.1%) issues were correctly classified.
The corrective maintenance was required to fix 51 (83.6%)
issues which reported obvious problems such as memory
leak. The adaptive maintenance was required only for 4
(6.5%) issues which reported performance degradation after
updating Wicket, awkward behaviors in particular browsers
and so forth.

In contrast with the correctly classified Bug issues, 6
(9.8%) Bug issues required the perfective or preventive
maintenance to be fixed. In other words, the 6 issues
should be treated as Improvement issues, but they were
misclassified as Bug issues. The perfective maintenance was
required for five Bug issues and the preventive maintenance
required for one Bug issue. Table 7 shows overviews of
misclassified Bug issues. In what follows, some examples
of the misclassified Bug issues are described.

TABLE 7. OVERVIEWS OF MISCLASSIFIED BUG ISSUES

Issue ID Type of Maintenance Overview

WICKET-1684 Perfective User request for changing a return value
WICKET-2025 Perfective Unnecessary method call
WICKET-2386 Perfective Change of JavaDoc
WICKET-3207 Perfective A method is called twice
WICKET-5527 Perfective Slowness due to inefficient use of a class
WICKET-3669 Preventive Same JavaScript code is run twice

TABLE 8. OVERVIEWS OF MISCLASSIFIED IMPROVEMENT ISSUES

Issue ID Type of Maintenance Overview

WICKET-315 Corrective Very slow parsing for web.xml
WICKET-1175 Corrective Integer overflow
WICKET-1502 Corrective Slowness in opening complex pages
WICKET-1790 Corrective Resource waste and slow performance
WICKET-1910 Corrective Performance problem due to no cash mechanism
WICKET-4270 Corrective Lightweight operation is needed
WICKET-4285 Corrective Bad exception handling wasting resources
WICKET-4554 Corrective Unnecessary directory creation every time test fails
WICKET-5933 Corrective Serialized same data again and again

4.1.1. Examples of misclassified Bugs (Perfective).
WICKET-20254 reports an unnecessary method call to be
fixed. Since the problem is only observed in the development
mode of Wicket and does not appear in the deployment
mode (i.e., few users affect the problem), WICKET-2025 is
regarded as an Improvement issue which should be resolved
in the perfective maintenance.

WICKET-32075 reports that the same method is unnec-
essarily called twice and it might lead to problems in some
situations. Since it seems that concrete problems were not
observed when the issue was reported, but calling the same
method twice consumes computational resources, WICKET-
3207 is regarded as an Improvement issue which should be
resolved in the perfective maintenance.

WICKET-55276 reports an inefficient cash use which
leads to the performance degradation. Since the problem is
reported by a developer and users do not seem to notice the
problem, in this study WICKET-5527 is a performance bug
but is regarded as an Improvement issue.

4.1.2. An example of a misclassified Bug (Preventive).
WICKET-36697 reports that a JavaScript code is executed
twice in specific web browsers. It is considered as a Bug
issue which should be fixed to adapt to changes of users’
computational environments (i.e., a bug to be fixed in the
adaptive maintenance), but it is also regarded as an Improve-
ment issue because it does not seem to strongly impact on
users. In fact, WICKET-3669 took 229 days to be fixed.

4. https://issues.apache.org/jira/browse/WICKET-2025

5. https://issues.apache.org/jira/browse/WICKET-3207

6. https://issues.apache.org/jira/browse/WICKET-5527

7. https://issues.apache.org/jira/browse/WICKET-3669

TABLE 9. MAINTENANCE ACTIVITIES FOR FIXING IMPROVEMENT

ISSUES bold TYPES ARE MISCLASSIFIED IMPROVEMENT ISSUES

Type of Maintenance Issues

Corrective 9
Adaptive 0

Perfective 46
Preventive 4

4.2. Misclassification of Improvement issues

Table 9 shows a result of manual reviews for 59 Im-
provement issues which are labeled as performance prob-
lems. Of the 59 Improvement issues, 50 (84.7%) issues were
correctly classified: the perfective maintenance was required
for 46 (78.0%) issues and the preventive maintenance was
required only for only 4 (6.7%) issues. In contrast with the
correctly classified Improvement issues, 9 (15.3%) issues
required the corrective maintenance to be fixed. In other
words, the 9 issues should be treated as Bug issues, but
they were misclassified as Improvement issues. There were
no issue which required the adaptive maintenance. Table 8
shows overviews of misclassified Improvement issues. In
what follows, some examples of the misclassified Improve-
ment issues are described.

4.2.1. Examples of misclassified Improvements (Correc-
tive). WICKET-3158 reports that parsing web.xml with the
DOM API is very slow. A developer commented that it can
be around 200 times faster by using other parsers. Since the
problem affects a wide range of users, it should be treated
as a Bug which is resolved in the corrective maintenance.

8. https://issues.apache.org/jira/browse/WICKET-315

TABLE 10. MEDIAN DAYS TO ASSIGN AND FIX AN ISSUE

Type Issues Time to assign (days) Time to fix (days)

Bug
Correctly classified 55 0.400 0.318

Misclassified 6 7.477 6.782

Improvement
Correctly classified 50 3.589 0.432

Misclassified 9 8.275 25.527

WICKET-17909 reports a strong need for optimizing
javascript which leads to slow down page rendering sig-
nificantly. Since this problem also affects many users, it
should be treated as a Bug which is resolved in the corrective
maintenance.

The other Improvement issues also reports problems of
wasting resources and slowness which have an impact on
the user experience. Since they are explicitly observed in
user’s environments, they should be also treated as Bugs
which should be resolved in the corrective maintenance.

5. DISCUSSIONS

As described in the previous section, we inspected 61
Bug issues and 59 Improvement issues which were reported
to resolve performance problems. We then found that 6 of 61
(9.8%) Bug issues and 9 of 59 (15.3%) Improvement issues
were misclassified. We believe that the ratio of misclassified
issues is not so low to be ignored, since developers would
preferentially try to spend their time to fix bugs which
might be just “Improvement” requests while developers
might neglect Improvement issues which are misclassified
“Bugs” to be fixed quickly. In this section, we investigate
and discuss actual impacts of the misclassification on the
software maintenance process.

5.1. Impacts of the misclassification

In our manual reviews for Bug and Improvement is-
sue reports including performance problems, we found that
some misclassified issues needed longer time to be resolved
than correctly classified issues. In order to more precisely
understand the impact of the misclassification on the bug-fix
process, we analyzed time to assign and resolve an issue:
the time to assign a task to a developer from when an issue
is reported and the time to complete the task (i.e., the time
to resolve the issue) from the task is assigned. Table 1010

shows the result of the additional analysis.
Of the 61 Bug issues, the correctly classified 55 Bug

issues were assigned and fixed within a day. By contrast,
the 6 misclassified Bug issues (i.e., the truth is Improvement
issues) spent over 7 days to be assigned and spent over 6
days to be resolved. As we showed in the overviews of the

9. https://issues.apache.org/jira/browse/WICKET-1790

10. Please note that some issues were assigned and fixed simultaneously
(i.e., the same time stamp is recorded on a single issue). It would be
recorded in BTS since developers reported to BTS after they fixed issues.
We did not include the simultaneously assigned and fixed issues to calculate
the result.

6 issues (Table 7), these issues included neither urgent nor
concrete problems affecting users widely. Developers in the
Wicket project seemed to be aware of the impacts of these
issues on the users (i.e., they are not so important problems
to be fixed quickly). In that context, the developers properly
dealt with the 6 issues, although they were misclassified as
Bugs.

Of the 59 Improvement issues, the correctly classified
Improvement issues required about 3.6 days to be assigned,
but they were fixed within a day after the assignments. Al-
though compared with the correctly classified 55 Bug issues,
these issues needed more time to be assigned, Improvement
issues in our study should be addressed in the perfective
or preventive maintenance where a problem does not need
to be resolved urgently. By contrast, the 9 misclassified
Improvement issues (i.e., the truth is Bug issues) spent
over 8 days to be assigned and surprisingly spent over 25
days to be resolved. These Improvement issues should be
quickly fixed as Bugs, since the reported problems can be
observed and could affect many users. From the result of
the additional analysis, we can consider that the misclas-
sification of Improvement issues might lead to prolong the
issue resolution.�

�

�

�

RQ1: What is the impact of the misclassification?
Misclassified issues could increase the time to assign and
fix the issues. Especially, bugs misclassified as Improve-
ment issues would be left unresolved for a long time.

5.2. Why Misclassified?

To understand why the misclassified issues were created,
we analyzed what and how developers discussed issues in
BTS. Table 11 shows the median number of comments
and the median number of developers per performance
issue. Comments for the misclassified Improvement issues
are much larger than other types of issues. For instance,
WICKET-117511 (Figure 1) reported an integer-overflow
problem and involved 7 developers in the discussions con-
sisting of 17 comments. In the discussions for WICKET-
1175, one developer firstly mentioned that they could fix
the problem, but developers decided not to fix it at the time
since changes from Long to Integer would be needed for
too many places of Wicket. A few years later, the developers
discussed the same problem again and again. Finally, it took
over 4 years to be resolved. From these results, we can
consider that the misclassified Improvement issues were not
mistakenly reported, but rather, they are not inevitable to

11. https://issues.apache.org/jira/browse/WICKET-315

TABLE 11. MEDIAN NUMBER OF COMMENTS AND COMMENTATORS PER AN ISSUE

Type Issues Num. of Comments Num. of Commentators

Bug
Correctly classified 55 3 2

Misclassified 6 2 1

Improvement
Correctly classified 50 2 2

Misclassified 9 8 3

Figure 1. WICKET-1175

some extent because they need big code changes and so
forth which cannot be handled easily and quickly. As shown
in the previous subsection, the misclassified Improvement
issues tend to prolong to be fixed. The data also supports
the reason why the misclassified Improvement issues were
reported and inevitable.

�

�

�

�

RQ2: Why is the misclassification occurred?
Misclassified Improvement issues would be filed because
developers involuntarily have to leave them for long even
if the developers are aware of them as Bugs to be fixed.

6. Conclusion and Future Work

In this paper we conducted a case study of misclassified
performance issues in the Apache Wicket project. We man-
ually inspected 1,000 Bug and 1,000 Improvement issues
respectively to understand the impact of the misclassification
on the bug-fix process and the reason why the misclassifi-
cation occurred. However, we need to study more projects
in the future to achieve general findings because we only
focused on an OSS project.

Acknowledgments

We are very grateful to Yuta Matsuo for helping us pre-
pare the dataset used in this study. This work is conducted as
part of Grant-in-Aid for Scientific Research: (C) 24500041
by Japan Society for the Promotion of Science.

References

[1] IEEE Std 610, “Ieee standard glossary of software engineering termi-
nology,” IEEE.

[2] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering (ESEC/FSE
’09), 2009, pp. 111–120.

[3] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What makes a good bug report?” IEEE Transactions on
Software Engineering, vol. 36, no. 5, pp. 618–643, Sept 2010.

[4] J. Bell, N. Sarda, and G. Kaiser, “Chronicler: Lightweight recording
to reproduce field failures,” in Proceedings of the 2013 International
Conference on Software Engineering (ICSE ’13), 2013, pp. 362–371.

[5] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun,
“Duplicate bug report detection with a combination of information
retrieval and topic modeling,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE
’12), 2012, pp. 70–79.

[6] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and K. Mat-
sumoto, “The impact of mislabelling on the performance and inter-
pretation of defect prediction models,” in Proceedings of the 37th
International Conference on Software Engineering (ICSE ’15), 2015,
pp. 812–823.

[7] Y. Matsuo, H. Yoshiyuki, and M. Ohira, “The misclassification of
performance bugs in oss projects: A case study of apache wicket,” in
Proceedings of Software Symposium 2016 in Yonago (SS2016), 2016,
p. (to appear) (in Japanese).

[8] M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y. Maeda, N. Lim-
settho, K. Fujino, H. Hata, A. Ihara, and K. Matsumoto, “A dataset of
high impact bugs: Manually-classified issue reports,” in Proceedings
of 12th Working Conference on Mining Software Repositories (MSR
15), 5 2015, pp. 518–521.

[9] ISO/IEC14764:2006, “Software engineering–software life cycle
processes–maintenance.”

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

