
Clustering OSS License Statements Toward
Automatic Generation of License Rules

Yunosuke Higashi
Graduate School of System Engineering,

Wakayama University

Email: s151039@sys.wakayama-u.ac.jp

Yuki Manabe
Graduate School of Science

and Technology, Kumamoto University

Email: y-manabe@cs.kumamoto-u.ac.jp

Masao Ohira
Graduate School of System Engineering,

Wakayama University

Email: masao@sys.wakayama-uc.ac.jp

Abstract—Reusing open source software (OSS) components
for own software products has become common in the modern
software development. Automated license identification tools has
been proposed to help developers identify OSS licenses, since
a large number of licenses sometimes must be checked to be
reused. Of the existing tools, Ninka [1] can most correctly
identify licenses of each source file by using regular expressions.
In case Ninka does not have license identification rules for
unknown licenses, Ninka reports they are “unknown licenses”
which must be checked by developers manually. Since completely-
new or derived OSS licenses appear nearly every year, a license
identification tool should be appropriately maintained by adding
regular expressions corresponding to the new licenses. The final
goal of our study is to construct a method to automatically create
candidates of license rules to be added to a license identification
tool such as Ninka. Toward achieving the goal, files identified
as unknown licenses must be classified by license firstly. In
this paper, we propose a hierarchical clustering which divides
unknown licenses into clusters of files with a single license. We
conduct a case study to confirm the usefulness of our clustering
method when it is applied for classifying 2,838 unknown license
files of Debian v7.8.0. As a result, it is confirmed that our method
can create clusters which are suitable as candidates for generating
license rules automatically.

I. INTRODUCTION

Utilizing Open Source Software (OSS) is a means of

reducing production costs in the modern software develop-

ment. OSS is also reusable as part of a proprietary software

product if it strictly complies with OSS licenses described in

source files [1]. In general, an OSS license is declared in a

header part of each source file as license statements. Before

reusing OSS for own products, all license statements must

be confirmed to avoid inappropriate, illegal reuse. Identifying

OSS licenses manually is a time-consuming task if there are

a large number of source files to be reused. In order to help

identify OSS licenses, license identification tools [1]–[5] have

been proposed.

Of the existing tools, Ninka [1] and FOSSology [2] which

are rule-based license identification tools correctly identifies

OSS licenses. Rule-based license identification tools can dis-

criminate between known and unknown licenses by using

regular expressions to identify OSS licenses, while the other

existing tools do not have such a mechanism and often make

a misjudgment that leads to lower accuracy for the license

identification. However, the biggest weakness of rule-based

license identification tools such as Ninka is that it will demand

to manually and constantly add new regular expressions to the

tools, every time when the tools encounter new OSS licenses

(i.e., the licenses is really unknown to the tools) or the tools

unexpectedly judges some licenses as unknown due to notation

variants in license statements. In case there are “unknown”

licenses for rule-based license identification tools, the manual

identification of OSS licenses is required eventually.
The goal of this study is to construct a method to automat-

ically generate candidates of license rules to be incorporated

into rule-based license identification tools in order to address

the issue above. To achieve the goal, we are developing a

method which consists of the following three steps for creating

license rules.

1) Grouping source files with unknown licenses: Source
files which are not identified by the license identifi-
cation tools are reviewed and grouped by license.

2) Checking notation variants for a single license: Each

group of source files with a single license is checked to

extract expression patterns for a single license.

3) Creating license rules: License statements are tokenized

as regular expressions and license rules are created to

be able to match new licenses.

In this paper, we focus on the automation of Step 1. To

automate Step 1, we introduce a method using grep and hier-

archical clustering. Grep is used to extract GPL/BSD-related

licenses which are known by a rule-based license identification

tool but are not completely identified due to notation variants

After filtering out source files with GPL/BSD-related licenses

using grep, a hierarchical clustering is used to group the rest

of “really-unknown” license files by license. Modifying the

common hierarchical clustering, our clustering method tries

to divides a set of files with unknown licenses into clusters of

files with a single license.
A case study is conducted to confirm the usefulness of using

grep and our clustering method when they are applied for

classifying 2,838 unknown license files of Debian v7.8.0. As

a result, it is confirmed that grep can extract 89% of files

with GPL/BSD-related licenses and the clustering method can

create clusters which are suitable as candidates for generating

license rules automatically.
The rest of the paper is organized as follows. Section II

discusses the problems in manually creating license rules for

rule-based license identification tools and technical challenges

2016 7th International Workshop on Empirical Software Engineering in Practice

978-1-5090-1851-2/16 $31.00 © 2016 IEEE

DOI 10.1109/IWESEP.2016.20

30

in this paper. Section III describes the usage of grep and our

clustering method. Section IV describes a case study where

software packages of Debian v7.8.0 is used to evaluate our

method. Section V discusses results of the case study. Section

VI introduces related work and Section VII concludes the

paper and describes our future work.

II. TOWARD AUTOMATIC GENERATION OF LICENSE RULES

This section describes current problems in using a license

identification tool and technical challenges in this paper.

A. Current Problems in Using a License Identification Tool

Automatic license identification tools such as Ninka [1] and

FOSSology [2] have matching rules to check and determine if

license statements declared in the header part of each source

file are known or unknown. In order to do so, each statement

in OSS licenses is manually analyzed and tokenized as regular

expressions in advance. However, completely-new or derived

OSS licenses appear nearly every year. If the existing tools do

not have matching rules for newly emerging licenses, license

rules must be manually added to the tools again thorough

manually creating matching rules.

The process of creating license matching rules follows the

steps 1 to 3 below.

1) Grouping source files with unknown licenses: Source

files which are not identified by the license identification

tools must be reviewed and grouped by license manually.

2) Checking notation variants for a single license: Even

if the source files are grouped by license, there often

exist notation variants (e.g., misspelling, small modifi-

cation and different expressions for the original license)

in license statements for a single license. Each group

of source files with a single license must be reviewed

manually again to know expression patterns for a single

license.

3) Creating license rules: Based on the reviews in Step 2,

license statements are tokenized as regular expressions

and license rules are created to be able to match new

licenses. Note that a “new” license connotes a license

with different variations in license statements even for

the same license.

These tasks are time-consuming especially when the rule-

based license identification tools cannot determine licenses

for a large number of source files. Therefor it is desired to

automate the process of creating license rules.

B. Technical Challenges

The final goal of our study is to construct a method to

automatically generate candidates of license rules to be incor-

porated into rule-based license identification tools in order to

address the issue above. In this paper, we try to tackle with the

issue in Step 1 where all source files with unknown licenses

are reviewed and grouped by license manually. Automating

Step 1 requires to address at least two technical challenges as

follows.

TABLE I
GPL/BSD-RELATED LICENSES

license family licenses

GPL

AGPLv3(+)
GPLv1(+), GPLv2(+), GPLv3(+)
LGPLv2.1(+), LGPLv3(+)
LibraryGPLv2.0(+)

BSD BSD2, BSD3, BSD4

1) Discriminating GPL/BSD-related licenses: In our pilot

study where Ninka was used to detect licenses of source files

in Debian v.7.8.0, we found that Ninka judged many source

files as “unknown” licenses even for very popular licenses

such as GPLv2, although Ninka had regular expressions to

detect such the licenses. As a result of analysis of the cause,

it was because regular expressions used in Ninka were rigidly

implemented not to misjudge a license and our dataset had

license statements with misspelling and/or notation variances

that were judged as “unknown” by Ninka.

In this paper, we try to correctly discriminate GPL/BSD-

related licenses shown in Table I, since GPL/BSD-related

licenses have a long history (the first version of GPL and

BSD were released in the late 1980s) and are widely used in

Linux and FreeBSD distributions. In Table I, “(+)” indicates

an option to specify the existence of an “or later” clause. For

instance, license statements for AGPLv3 can be expressed

in two ways (i.e., “AGPLv3” and “AGPLv3 or later”). The

GPL/BSD-related licenses could be distinguishable not by

using rigid combinations of regular expressions but by finding

license names and versions including “or later” options in

license statements.

2) Creating groups of source files with unknown licenses:
To automate the manual review and grouping in Step 1

described earlier, it is ideal to create groups of source files only

with a single license. That is, the number of groups should

correspond to the number of licenses existed in software

components being reused. And, toward Step 2 and Step 3,

groups should not be divided due to notation variations for

a single license. If groups are divided by different notations

for a single license, groups consisting of files with different

license statements will be created and/or files with a single

license will spread among different groups. This will lead to

extra reviews of license statements in Step 2 and incorrect

regular expressions in Step 3.

III. A CLUSTERING METHOD TOWARD THE AUTOMATED

LICENSE RULE GENERATION

In this section, we introduce a method to automate Step 1

discussed in the previous section, which is consisted of using

grep and hierarchical clustering to create clusters which would

be appropriate as candidates for automating the license rule

creation.

A. An overview of the clustering method

Figure 1 shows an overview of the proposed method in

this paper. According to the following procedure, the method

31

���������	
���������

�����
�	����������������������
�	
�������	��������

�����	������������	
�����
����� ��������!"��	
�����
!���������	����
�	
���

�����	���

�	
�����#�

���$%
&�

���$'
&� ���$%�

���(�

����)�����*� 	�	���

�������������	
������
��	
��	��������������
!"�����)�����*� 	�	����

�
�����

���������	
���������� ��������

�	
�������
+�����'(��
�	
������

���������	
���������� ���������
��	
��	��������������
!"�����)�����*� 	�	�����

�

�����
�	�������	
�����
����� �����!"���	���,	����

�	
�����-�

Fig. 1. An overview of the proposed method

creates clusters of unknown license files which are reported

by rule-based license identification tools.

1) License statements are extracted from unknown license

files by using a rule-based license identification tool such

as Ninka.

2) The extracted license statements are separately grouped

so that similar but discriminable licenses such as GPL

version 1, 2 and 3 can be correctly identified. In this

paper, license statements belonging to the GPL license

family and the BSD license family are grouped by each

license.

3) The rest of unknown license files which is not grouped

in the previous step are divided into clusters of unknown

license files, based on a dendrogram created by hierar-

chical clustering.

In what follows, we describe the above procedure in detail.

B. The clustering method

1) Extracting license statements with Ninka: Ninka (as of

version 1.1) can extract license statements with one or more

of frequently-used 177 words (e.g., “warranties” and “copy-

right”) from comments in source code. Using Ninka, license

statements in a set of unknown license files are extracted as a

set of unknown license statements files.

2) Using grep to discriminate GPL/BSD-related licenses
from others: Using grep, the seventeen GPL/BSD-related

licenses shown in Table I are grouped by license. For the GPL

license family, the discriminant conditions in Table II are used

to know licenses. Using a combination of a key phrase and a

version name, one of the GPL-related license is detected by

grep. For the BSD license family, the discriminant conditions

and the flow conditions in Figure 2 are used. These conditions

above are created based on examples of license statements

which are provided from Open Source Initiative (OSI)1.

In case there exist license statements which meet multi-

licensing for GPL and BSD, it could be determined as both one

of the GPL licenses and one of the BSD licenses. Therefore,

in this step, such unknown license statements are treated later

in the entire process to newly create license rules for them.

1http://opensource.org

TABLE II
DISCRIMINANT CONDITIONS FOR GPL LICENSE FAMILY

GPL Family Keyphrase versions
GPLv1 GNU General Public License version 1
GPLv2 GNU General Public License version 2
GPLv3 GNU General Public License version 3
LibraryGPLv2 GNU Library General Public License version 2
LGPLv2.1 GNU Lesser General Public License version 2.1
LGPLv3 GNU Lesser General Public License version 3
AGPLv3 GNU Affero General Public License version 3

�������	
������

�������	
����� ������
�����
����
�������

-������������

-�����������

-������������

-�����������

���
�

�����

�����

������������������������

�������� k�	
������

��������� �� �����!������������������� �

������
 �� �����!����������!�����

������� ����������������

������� #���� "�������#����������

Fig. 2. Discriminant conditions and flow for BSD license family

C. Grouping unknown license statements files by license

A dendrogram is created by Ward’s method [6] from the

unknown license statements files which are not grouped with

grep in the previous step. Before creating a dendrogram, the

unknown license statements files are converted into Bag of

Words vectors. Using the obtained dendrogram, the unknown

license statements files are divided into clusters. Here, it is

ideal to contain the same type of license statements files in

each cluster.

In the general usage of a dendrogram, clusters are obtained

by only once cutting the tree at any height. In our study,

cutting the tree at a lower place would yield large clusters

which would contain different kinds of license statements,

while cutting the tree at a higher place would yield many

small clusters that means the same type of license statements

would be scattered across different clusters.

Since in this study the same type of license statements

should become a single cluster, we introduce two kinds of

32

���
������	�

��

���
������	�

���
������	�

��
�����	�

�
��

��
�	�

���
�	�

��

���
�����	�

���
�����	�

��

���
������	�

���
�	��
��

���
�����	�

�
���
��

Condition α Condition β

Fig. 3. Hierarchical clustering used in this study

conditions for cutting the tree in a dendrogram multiple times.

Suppose a dendrogram in Figure 3 is obtained. In the figure,

Xx represents one data (i.e., license statements in a source file)

and Cx represents one cluster which is created by merging a

pair of two data (Xx) or a pair of two clusters. Based on

Ward’s method, smallest clusters such as SCi and SCj are

created using the dissimilarity (i.e., the distance in the bag-of-

words vector space) between two data. In the same manner,

clusters such as Ci and Cj are created using the dissimilarity

between two clusters or between one cluster and one data. The

dissimilarity (d(Ci, Cj)) between Ci and Cj is formulated as

d(Ci, Cj) = E(Ci ∪ Cj)− E(Ci)− E(Cj) (1)

where E(Cx) represents a sum of squared Euclidean distances

between the center of Cx and elements in Cx. The dissimilarity

is represented as height in a dendrogram. The height of a

smallest cluster (H(SCx)) is uniquely-determined from the

dissimilarity between a pair of two data (Xx) included in the

cluster. The height of a cluster (H(Cx)) is also determined by

the dissimilarity (d(Ci, Cj)) between following two clusters.

Here we introduce two conditions for creating clusters by

cutting multiple trees in a dendrogram.

1) Condition α: The condition α is used to determine

whether to create a large cluster. For instance, as shown in

Figure 3, the cluster Ci should be isolated from Cj since Ci

includes license statements files with a single license (i.e.,

GPLv2). Ci can be created by cutting the tree between Cp

and Ci. In order to do so, the tree will be cut if the following

equations are met.

H(Ci) > H(SCi) and H(Ci) > H(SCj) (2)

It is assumed that SCi and SCj should be merged as a cluster

(Ci) but should not merged to the next level cluster (i.e., Cp)

because the cluster SCi and the cluster SCj are semantically

closer than Ci and Cj .

If the equations are not met, the same processing are applied

to the next level of clusters (i.e., Ci and Cj).

2) Condition β: Since a cluster is only created by merging

two data or two clusters in the condition α, it cannot be created

from a cluster and one data such as Cj in the right side of the

TABLE III
DISCRIMINATION ACCURACY OF GREP FOR GPL/BSD-RELATED LICENSES

License TP FP FN Precision Recall F-measure

GPLv1+ 6 0 0 1.00 1.00 1.00
GPLv1 – – – – – –
GPLv2+ 96 1 53 0.99 0.64 0.78
GPLv2 74 3 71 0.96 0.51 0.67
GPLv3+ 21 2 14 0.91 0.60 0.72
GPLv3 24 3 22 0.89 0.52 0.66
LibraryGPLv2+ 13 1 2 0.93 0.87 0.90
LibraryGPLv2 6 0 0 1.00 1.00 1.00
LGPLv2.1+ 18 1 13 0.95 0.58 0.72
LGPLv2.1 13 1 33 0.93 0.28 0.43
LGPLv3+ 8 0 6 1.00 0.57 0.73
LGPLv3 13 3 8 0.81 0.62 0.70
AGPLv3+ 11 0 0 1.00 1.00 1.00
AGPLv3 4 0 1 1.00 0.8 0.89
BSD2 17 27 3 0.39 0.85 0.53
BSD3 16 1 34 0.94 0.32 0.48
BSD4 2 0 7 1.00 0.22 0.36

all 342 43 195 0.89 0.64 0.74

dendrogram in Figure 3. The condition β is an extension of the

condition α that allows a cluster to be created by merging a

cluster and one data. Regarding a datum in a dendrogram as a

cluster only with one data, the conditional equation 2 is used

to create a cluster such as Cj . The condition β is intended

to create more clusters and more isolated data so that license

statements files are much more correctly grouped by license.

IV. A CASE STUDY

This section describes a case study to investigate how well

our clustering method can create clusters which could be

candidates for generating license rules.

A. Dataset

In the case study, 12,725 software packages2 of Debian

v7.8.0 were used to obtain a set of unknown license files.

In order to do so, compressed files with the file extensions

of .zip, .tar.gz, .tar.xz, and .tar.bz2 were regarded as source

code archives and were uncompressed. Of the uncompressed

files, 12,725 source files written in Java, C, C++, Lisp, Perl,

and Python were randomly sampled so that one source file for

each software package can be selected.

B. Step 1: License Statements Extraction with Ninka

Ninka was used to identify OSS licenses of the sampled

source files. As a result, 2,838 unknown license files were

obtained as a set of unknown license statements files. All

the unknown license statements files were manually reviewed

and were confirmed that they consisted of 145 different OSS

licenses.

C. Step 2: GPL/BSD-Related License Extraction with grep

1) Purpose: In step 2, GPL/BSD-related license statements

files are extracted and grouped by license, using grep. We

2http://ftp.riken.jp/pub/Linux/debian/debian-cd/
7.8.0/source/iso-dvd/

33

TABLE IV
METRICS TO EVALUATE CREATED CLUSTERS AND THEIR FEATURES

Metrics Description
C The number of created clusters.

SLC (Single License Clusters) The number of clusters with a single license. Creating more SLC is desired in this study.

SF (Single Files)
The number of single files which are not clustered. SF are not desired because creating a
license rule for each single file is not efficient.

LSLC (Licenses in SLC) The number of licenses in SLC. It is ideal that LSLC is same as SLC.
RSLC (Ratio of SLC) The ratio of the number of SLC to the number of C (SLC/C). A higher ratio is desired.

RSF (Ratio of SF) The ratio of the number of SF to the number of C (SF/C). A lower ratio is desired.
RLSLC (Ratio of LSLC) The ratio of the number of LSLC to the number of SLC. A higher ratio is desired.

analyze and evaluate that grep can correctly find GPL/BSD-

related licenses from the unknown license statements files (i.e.,

2,838 files) obtained in step 1.

2) Approach: Since the discrimination accuracy of using

grep is of interest, the result of using grep is evaluated

with precision (
TruePositive(TP)

TruePositive(TP)+FalsePositive(FP)) and re-

call (
TruePositive(TP)

TruePositive(TP)+FalseNegative(FN)) through comparing

with the result of the manual inspection for 2,838 files in

step 1. In this study we emphasize a value of precision,

since it is well-known that precision and recall have a trade-

off relationship and higher recall means that more licenses

can be extracted but would be less correct (in case lower

precision). Creating license rules correctly is much important

in this context. Emphasizing a value of precision in this study

is because of safety in creating license rules, though licenses

for many files might not identified in this step.

3) Result: Of 2,838 unknown license statements files, 385

files were extracted and grouped by GPL/BSD-related license.

Figure III shows the result of the discrimination accuracy

of grep for each GPL/BSD-related license. “–” in the figure

means that license statements for GPLv1 did not exist in the

dataset. From Table III, we can confirm that the discrimination

accuracy of grep in all was 0.89 of precision and 0.64 of recall.

D. Step 3: Grouping unknown license statements files by
license

1) Purpose: In step 3, our hierarchical clustering method

are applied to 2,453 unknown license statements files which

are not extracted in Step 2. We analyze and evaluate that the

method can create groups with a single license which would

be better candidates for automating the license rule generation.

2) Approach: First, a dendrogram is created using the un-

known license statements files. Then, clusters of the unknown

license statements files are created according to the condition

α and β for grouping the unknown license statements files.

The ideal clusters should only consist of groups with a

single license. Through reviewing all the unknown license

statements files in Step 3 for evaluation, 81 clusters and 37

single files (i.e., 118 licenses exist in Step 3.) should be created

in the ideal case. Based on the ideal case, clusters created by

our clustering method are evaluated.

3) Result: Table V shows the evaluation results. The con-

dition β for the cluster division creates more SLC than the

condition α. The condition α marks higher RSLC and lower

TABLE V
CLUSTERING CONDITIONS AND EVALUATION METRICS

C SLC SF LSLC RSLC RSF RLSLC

cond. α 247 153 48 35 0.62 0.19 0.23
cond. β 719 409 207 42 0.52 0.29 0.10

ideal 81 31 37 17 0.36 0.46 0.55

RSF than the condition β. The condition α also marks higher

RLSLC than the condition β3 .

V. DISCUSSIONS

This section discusses the results of our case study.

A. grep for GPL/BSD-related licenses

From the result of III, the precision in all was 0.89 that

is not so high. In particular, the precision for BSD2 was the

worst (0.39). These results indicate that it is still insufficient to

address the technical challenge described in II-B1. In order to

understand the reason why the precision for BSD2 was worst,

we conducted an additional analysis by manually reviewing

the unknown license statements files which failed to be dis-

criminated. For BSD2, mis-discriminations often occurred to

Apache License v1.1. Since Apache License v1.1 is created

by adding clauses to and modifying BSD2, the discrimination

condition for BSD2 in Table 2 mistakenly corresponds to

Apache License v1.1. For this case, the precision can be

improved by excluding license statements files which include

the term “Apache”. In the future, we also need to expand key

phrases used in this study to handle licenses created by adding

to and/or modifying existing licenses.

We also found other licenses were mis-categorized to BSD2

due to notation variants (e.g., “The name of ” and “Neither

name of”) for clause3 used to detect BSD3 or BSD4. To detect

BSD2 more correctly, additional patterns for clause3 are also

needed to resolve the problem. For the GPL license family,

the discrimination failed due to notation variants for “or later”

which was expressed as “or above” or “or any newer version”

in license statements. Additional discriminant conditions for

the notation variants must be added to improve the precision of

3Note that the case study did not care if a license has exception clauses
or not. It means that a license with exception clauses and a license without
exception clauses could be categorized to the same cluster. The value of #SLC
might be lower than that in Table V. Since discriminating licenses with or
without exception clauses by clustering would be difficult, additional key
phrases are needed for licenses with exception clauses in the future.

34

the GPL license family. In this manner, we observed notation

variants caused many discrimination errors. However, in other

words, it might indicate that our method is useful to detect

notation variants which are unknown by license identification

tools such as Ninka.

B. The Two Conditions for Clustering

From the result of V, the clustering condition α is better

than the condition β. Using the condition β produces more

single license clusters (SLC) than α, but it also produces

much more single files (SF) than α. In contrast to β, the

condition α creates clusters with the higher ratio of SLC

to created clusters (RSLC) and with the lower ratio of SF

to created clusters (RSF). This means that the condition α
is more resistant to create a cluster which includes license

statements files with different licenses. In addition, the ratio

of the number of licenses in clusters (LSLC) to the number of

(SLC) (i.e., RLSLC) is higher when the condition α is used.

This means that the condition α is also more resistant to create

multiple clusters for the same license and that the condition α
is better to allow a cluster to include license statements files

with notation variants.

The ideal state of clusters cannot be obtained unless the

number of existed licenses are known. Anyone cannot know

it before manually reviewing all unknown license statements

files reported by a license identification tool. All the scores

of RSLC, RSF, and RLSLC with the condition α are better

if it is compared to the ideal state of clusters. Based on the

discussions above, we can conclude that using the condition α
for clustering creates clusters which are suitable as candidates

for generating license rules automatically.

VI. RELATED WORK

A. License compliance

In these days, many studies are tackling with the issue on

the assurance of OSS license compliance. Sojer et al. [7] in-

vestigated commercial software’ knowledge on OSS licenses.

As a result, they found that commerce developer only have

limited knowledge on OSS licenses and acquire the knowledge

from unofficial sources of information. It is important for

developers to learn right information about OSS licenses in

the right place. German et al. [8] proposed a method so called

Kenen that semi-automatically discriminates required licenses

when reusing Java software components. Vendome et al. [9]

studied on common understandings among developers on the

reason and timing to change a license, through interviews

of developers. Wu et al. [10] proposed a method to detect

license inconsistencies in a large-scale OSS. As a result of an

experiment using Debian v7.5.0, license inconsistencies were

detected for Debian v7.5.0. The final goal of our study is to

support rigorous compliance with OSS licenses by helping

developers to easily create license rules.

B. License identification tools

Beside Ninka [1] and FOSSology [2], Tuunanen et al. [11]

also proposed a rule-based license identification tool. Kapitsaki

et al. [12] compared functions between license identification

tools and showed advantages and disadvantages of the tools.

We used Ninka for our case study, but our approach to

automating the license rule generation would be applicable

to other tools in the future.

VII. CONCLUSION AND FUTURE WORK

Toward the automated license rule generation, in this paper

we proposed a method to automatically classify unknown

license statements files which are reported by rule-based

license identification tools. Our method consists of (1) using

grep to discriminate GPL/BSD-related licenses from others

and (2) clustering unknown licenses into groups with a single

license. A case study was conducted for licenses of 12,725

source files randomly sampled from software packages of

Debian v7.8.0. Our method was applied to 2,838 source files

which were identified as “unknown” by Ninka. As a result,

we found that (1) 89% of GPL/BSD-related licenses were

correctly discriminated by using grep and (2) our clustering

method created clusters which are suitable as candidates for

generating license rules automatically.
However, the discriminant conditions for GPL/BSD-related

licenses should be improved based on the findings discussed in

V-A, since they were still not perfect. The proposed clustering

method also must be improved in the near future, since many

clusters had license statements files with different licenses (i.e.,

our method still creates clusters which are not appropriate

candidates for the license rule generation.

ACKNOWLEGEMENT

This work is conducted as part of Grant-in-Aid for Scientific

Research: (C) 24500041 by Japan Society for the Promotion

of Science.

REFERENCES

[1] D. M. German, Y. Manabe, and K. Inoue, “A sentence-matching method
for automatic license identification of source code files,” in Proc. of ASE
’10, 2010, pp. 437–446.

[2] R. Gobeille, “The fossology project,” in Proc. of MSR’08, 2008, pp.
47–50.

[3] OSLC, http://forge.ow2.org/projects/oslcv3/.
[4] what license, http://www.what-license.com/.
[5] Ohcount, https://github.com/blackducksw/ohcount.
[6] J. H. Ward, “Hierarchical grouping to optimize an objective function,”

Journal of the American Statistical Association, vol. 58, no. 301, pp.
236–244, 1963.

[7] M. Sojer and J. Henkel, “License risks from ad hoc reuse of code from
the internet,” Communications of the ACM, vol. 54, no. 12, pp. 74–81,
2011.

[8] D. German and M. D. Penta, “A method for open source license
compliance of java applications,” IEEE Software, vol. 29, no. 3, pp.
58–63, 2012.

[9] C. Vendome, M. Linares-Vsquez, G. Bavota, M. D. Penta, D. M.
German, and D. Poshyvanyk, “When and why developers adopt and
change software licenses,” in Proc. ICSME. IEEE, 2015, pp. 31–40.

[10] Y. Wu, Y. Manabe, T. Kanda, D. M. German, and K. Inoue, “A method
to detect license inconsistencies in large-scale open source projects,” in
Proc. of MSR ’15, 2015, pp. 324–333.

[11] T. Tuunanen, J. Koskinen, and T. Kärkkäinen, “Automated software
license analysis,” Automated Software Engg., vol. 16, no. 3-4, pp. 455–
490, 2009.

[12] G. M. Kapitsaki, N. D. Tselikas, and I. E. Foukarakis, “An insight into
license tools for open source software systems,” Journal of Systems and
Software, vol. 102, pp. 72 – 87, 2015.

35

