
A Dataset of High Impact Bugs:
Manually-Classified Issue Reports

Masao Ohira∗, Yutaro Kashiwa∗, Yosuke Yamatani∗, Hayato Yoshiyuki∗, Yoshiya Maeda∗,
Nachai Limsettho†, Keisuke Fujino†, Hideaki Hata†, Akinori Ihara† and Kenichi Matsumoto†

∗Graduate School of Systems Engineering, Wakayama University, Wakayama, Japan

Email: {masao, s141015, s151049, s151054, s161053}@sys.wakayama-u.ac.jp
†Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan

Email: {nachai.limsettho.nz2, fujino.keisuke.fz9, hata, akinori-i, matumoto}@is.naist.jp

Abstract—The importance of supporting test and maintenance
activities in software development has been increasing, since
recent software systems have become large and complex. Al-
though in the field of Mining Software Repositories (MSR) there
are many promising approaches to predicting, localizing, and
triaging bugs, most of them do not consider impacts of each
bug on users and developers but rather treat all bugs with equal
weighting, excepting a few studies on high impact bugs including
security, performance, blocking, and so forth. To make MSR
techniques more actionable and effective in practice, we need
deeper understandings of high impact bugs. In this paper we
introduced our dataset of high impact bugs which was created
by manually reviewing four thousand issue reports in four open
source projects (Ambari, Camel, Derby and Wicket).

I. INTRODUCTION

The importance of supporting test and maintenance ac-

tivities in software development has been increasing, since

recent software systems have become large and complex.

In the field of mining software repositories (MSR), several

promising approaches have been proposed to help developers,

for instance, to triage bugs [1], detect duplicate bugs [2],

localize defects [3] and so forth.

Previous studies, however, have treated each bug equally

without considering its impacts on bug management process

and software products. For instance, a bug triaging method

can predict who should fix a bug [1] but it can neither predict

who should fix the most important bug nor which bug would
result in a deterioration in user satisfaction. To make MSR

techniques more actionable and effective in practice, we need

much deeper understandings of high impact bugs.

Our pilot study [4] classified bugs reported to four open

source projects into six types of high impact bugs [5]–[11],

based on literature reviews. In the study one hundred bug

reports were manually inspected for each project. The results

of the investigation showed distributions of high impact bugs

in the four projects and overlapped relationships among high

impact bugs. Since the number of high impact bugs included

in the dataset was very small, further investigations using a

much larger sample size of data was required to improve the

reliability of the conclusions. This paper introduces a large

dataset of high impact bugs which includes manually-labeled

four thousand issue reports.

II. DEFINITIONS OF HIGH IMPACT BUGS

Since a bug can highly impact on a variety of activities in

the bug management process, products and end-users, several

recent studies [5]–[11] have started with exploring high impact

bugs such as performance, security, blocking bugs and so forth.

In this paper, we roughly classify high impact bugs defined

by the existing studies into two types: process and product.

For instance, a blocking bug sometimes requires developers

to reschedule bug-fix tasks due to its dependency on other

bugs which must be fix prior to fixing the blocking bug. A

performance bug can directly decrease users’ satisfaction with

products. In other words, a bug impacted on a bug management

process is a matter to developers and a bug impacted on

products is a matter to users. In what follows, we marshal

studies on high impact bugs in terms of process and products.

A. Process

A bug can impact on a bug management process in a project.

When an unexpected bug is found in an unexpected compo-

nent, developers in the projects would need to reschedule task

assignments in order to give first priority to fix the newly-

found bug.

1) Surprise bugs: A surprise bug [5] is a new concept

on software bugs . It can disturb the workflow and/or task

scheduling of developers, since it appears in unexpected timing

(e.g., bugs detected in post-release) and locations (e.g., bugs

found in files that are rarely changed in pre-release). As a

result of a case study of a proprietary, telephony system which

has been developed for 30 years, [5] showed that the number

of surprise bugs were very small (found in 2% of all files) and

that the co-changed files and the amount of time between the

latest pre-release date for changes and the release date can be

good indicators of predicting surprise bugs.

2) Dormant bugs: A dormant bug [6] is also a new concept

on software bugs and defined as “a bug that was introduced in
one version (e.g., Version 1.1) of a system, yet it is Not reported
until AFTER the next immediate version (i.e., a bug is reported
against Version 1.2 or later).” [6] showed that 33% of the

reported bugs in Apache Software Foundation (ASF) projects

were dormant bugs and were fixed faster than non-dormant

bugs. It indicates that dormant bugs also affect developers’

2015 12th Working Conference on Mining Software Repositories

978-0-7695-5594-2/15 $31.00 © 2015 IEEE

DOI 10.1109/MSR.2015.78

518

workflow in fixing assigned bugs in order to give first priority

to fix the dormant bugs.

3) Blocking bugs: A blocking bug is a bug that blocks

other bugs from being fixed [7]. It often happens because of

a dependency relationship among software components. Since

a blocking bug inhibit developers from fixing other dependent

bugs, it can highly impact on developers’ task scheduling since

a blocking bug takes more time to be fixed [7] (i.e., a fixer

needs more time to fix a blocking bug and other developers

need to wait for being fixed to fix the dependent bugs).

B. Products

Bugs impacted on software products include security bugs

[8], performance bugs [9], and breakage bugs [5]. They

directly affect user experience and satisfaction with software

products.

1) Security bugs: A security bug [8] can raise a serious

problem which often impacts on uses of software products

directly. Since Internet devices (e.g., smartphones) and their

users are increasing every year, security issues of software

products should be of interest to many people. In general,

security bugs are supposed to be fixed as soon as possible.

2) Performance bugs: A performance bug [9] is defined

as “programming errors that cause significant performance
degradation.” The “performance degradation” contains poor

user experience, lazy application responsiveness, lower system

throughput, and needles waste of computational resources

[12]. [9] showed that a performance bug needs more time to

be fixed than a non-performance bug. So performance bugs

can affect users for a long time.

3) Breakage bugs: A breakage bug [5] is “a functional bug
which is introduced into a product because the source code is
modified to add new features or to fix existing bugs”. Though it

is well-known as regression, a breakage bug mainly focuses on

regression in functionalities. A breakage bug causes a problem

which makes usable functions in one version unusable after

releasing newer versions.

III. DATA COLLECTION

This section describes how we collect our dataset from issue

reports in four open source projects. Issue report data has

been collected from the Apache Ambari1, Camel2, Derby3, and

Wicket4 projects where JIRA5 is used for managing reported

issues. These projects were selected because they met the

following criteria for our project selection.

1) Target projects have a large number of (at least
several thousand) reported issues. Our previous study

[4] created a dataset consisting of four hundred issue

reports in four open source projects (i.e., one hundred

issue reports per project). A result of the study showed

that the dataset only had a small number of high impact

1The Apache Ambari project: http://ambari.apache.org/
2The Apache Camel project: http://camel.apache.org/
3The Apache Derby project: http://db.apache.org/derby/
4The Apache Wicket project: https://wicket.apache.org/
5JIRA: https://www.atlassian.com/software/jira/

TABLE I
DATA SOURCES AND OUR DATASET

All the issues in
Nov. 20 2014

Our Dataset
BUG IMPROVEMENT

Ambari 8,389 871 129
Camel 8,063 580 420
Derby 6,772 734 26

Wicket 5,769 663 337

bugs which implied that it is difficult to use the dataset

for prediction model building and/or machine learning

in the future work. This is the reason why we would

like to re-create the dataset at the moment.

2) Target projects use JIRA as an issue tracking
system. From a project using JIRA, the information

of AFFECTED and FIXED versions of an issue can

be extracted. The version information is required to

determine Surprise and Dormant bugs. Using issues

reported to JIRA makes our investigation easier because

only the rest of the other four types of bugs should be

reviewed manually. We decided to select target projects

supported by the Apache Software Foundation (ASF),

because many of projects in the ASF use JIRA for

tracking issues.

3) Target projects are different from each other in
application domains. The distribution of high impact

bugs was expected to be very different in application

domains. At least twelve projects in the ASF met the

first criterion above. After examining what they are

developing, we decided to select the Ambari, Camel,

Derby, and Wicket projects.

In JIRA, an issues report has a variety of types such as

BUG, IMPROVEMENT, DOCUMENTATION, TASK, and so

forth. Since we would like to focus on high impact bugs,

we randomly selected one thousand issues with BUG or

IMPROVEMENT from all the issues in each project. In

general, IMPROVEMENT issues are not recognized as BUG,

but we included them in the dataset because in our previous

study they sometimes seemed to be equally treated as BUG. In

fact, some of them could be classified into high impact bugs.

In this paper we refer to a bug reported as an issue without

distinguishing whether BUG or IMPROVEMENT.

Table I shows the number of all the issues in November 20

2014 and the number of BUG and IMPROVEMENT issues

included in our dataset (one thousand issues per project).

IV. MANUAL CLASSIFICATION

Since Surprise and Dormant bugs are easily detected based

on the definition [5], [6] and can be automatically labeled

on issues by using our script, the rest kinds of high impact

bugs (i.e., Blocking, Security, Performance, and Breakage
bugs) must be labeled manually. The manual classification was

conducted as the following steps:

1) For a project, a graduate student of the authors reviewed

a thousand issue reports and labeled one or more bug

519

(a) Ambari

(b) Camel

(c) Derby

(d) Wicket

Fig. 1. Distributions of high impact bugs in four open source projects

types on each issue (i.e., multiple labelling is allowed.).

Four graduate students participated in this session which

took ten days to two weeks.

2) Four faculty members of the authors independently did

the same thing as the students.

3) A student and faculty member who reviewed the same

issue reports discussed differences of labeling between

them until reaching a common understanding and

labeling the same types on a single issue.

Although the review results were almost the same among

students and faculty members, some of bugs were judged

differently. In particular, the reviewers had to judge perfor-
mance, security and breakage bugs subjectively to some extent

since there are no established definitions to detect them while

blocking can be semi-automatically identified by the definition

in previous study [7].

TABLE II
INFORMATION INCLUDED IN OUR DATASET

NAME Info.

issue id Issue ID
type Type of an issue (BUG or IMPROVEMENT)

status Status of an issue (Resolved or Closed)
resolution Resolution type of an issue (FIXED only)
component Target component/s

priority Priority of an issue
reporter Repoter’s name
created Time and Day of an issue reported

assigned Time and Day of an issue assigned
assignee Assignee’s Name
resolved Time and Day of an issue resolved

time resolved Time to resolve an issue (created to resolved)
time fixed Time to fix an issue (assigned to resolved)
summary Summary of an issue

description Descriptions of an issue
affected version Versions affected by an issue

fixed version Versions of a fixed issue
votes Number of votes

watches Number of watchers
description words Number of words used in descriptions

assignee count Number of assignees
comment count Number of comments for an issue

commenter count Number of developers who comment on an issue
commit count Number of commits to resolve an issue

file count Number of committed files to resolve an issue
files Committed file names and paths

Figure 1 shows distributions of high impact bugs in the four

open source projects. The number of surprise bugs are much

larger than the other types of bugs except for Derby. In Derby,

breakage bugs seems to be dominant issues. The reviewers for

Derby pointed out that results of regression tests were actively

reported to Derby’s JIRA. The number of the other type of

bugs are also moderately large except for blocking bugs. This

might be because the Derby project has been developing a

JAVA RDBMS which requires high reliability and performance

and it also has a long history (i.e., large-scale and complex

software).

Except for surprise bugs, performance bugs are relatively

more than the other type of bugs throughout all the projects.

Software performance seems to be considered very important

across the projects because it directly affects users’ operations

and satisfaction with software products. Note that performance
bugs were especially difficult to be captured because there

is no explicit criteria to judge whether an issue represents a

performance bug or not. The interpretations of performance
bugs were often different among the reviewers although they

had a session to reach a common understanding. In fact, the

meaning of performance differed from application domains.

We might need to further elaborate the dataset in the future.

Many Dormant bugs were also observed except for Ambari.

In Ambari, blocking and breakage bugs are relatively less

than security and performance bugs. This is probably because

Ambari is the newest project among the target projects.

V. OTHER INFORMATION IN THE DATASET

Not only labeled information of high impact bugs but also

other many information is included in our dataset. Since col-

520

TABLE III
MEDIAN DAYS TO FIX A BUG

Sur Dor Blo Sec Per Bre

Ambari 0.1 19.7 10.4 0.1 0.2 1.1
Camel 0.6 0.5 1.6 2.7 1.0 0.6
Derby 24.6 27.9 11.9 27.1 16.8 15.0

Wicket 2.8 1.2 6.9 0.8 3.7 3.8

TABLE IV
DISTRIBUTIONS OF PRIORITY

Sur Dor Blo Sec Per Bre

Ambari Critical 29 0 0 3 8 0
Blocker 5 0 2 1 2 2

Major 276 2 8 25 30 5
Minor 7 0 0 0 1 0
Trivial 0 0 0 0 0 1

Camel Critical 10 8 2 1 7 1
Blocker 2 0 0 1 0 0

Major 227 92 9 16 65 39
Minor 137 50 6 13 21 15
Trivial 11 3 1 2 1 0

Derby Critical 3 4 3 0 3 6
Blocker 1 3 1 0 1 4

Major 76 85 14 61 57 140
Minor 59 36 4 27 33 44
Trivial 8 9 1 0 7 3

Wicket Critical 7 1 0 1 4 5
Blocker 0 0 1 0 1 0

Major 227 72 2 8 62 45
Minor 103 23 1 1 15 14
Trivial 22 2 1 0 1 2

lected issue reports include a wealth of information regarding

issues, we extracted as much information as possible. Table

II shows a list of the information we extracted from issue

reports. Our dataset is available from http://goo.gl/r53j7w as

Microsoft Excel format.

Using these information together with the labels allows us

to further investigate consequences of high impact bugs on a

bug management process. For instance, Table III shows median

days to fix a bug which vary from not only the projects but also

the types of high impact bugs. Table IV shows distributions

of priority of issues. “Major” is dominant priority throughout

the projects. However there are many “Minor” issues except

for Ambari, though we labeled issues based on the definitions

of “high” impact bugs in the previous study. By only focusing

on higher priority issues (i.e., Major, Blocker, and Critical),

We might be able to achieve a new insight on “really high”

impact bugs.

The dataset also can be used to analyze overlapping high

impact bugs since multiple labelling was allowed. As we

did in our pilot study [4], analyzing overlapping bugs (e.g.,

security and performance bugs) might bring an important clue

to understand what is really high impact bugs for developers

and/or users. The dataset also might be able to be used to

improve or enhance existing MSR techniques. Although it

is well-known that the information of priority and severity

tagged on issues is often not reliable (i.e., the majority of

priority and severity tags are middle-level.), many of existing

techniques rely on such problematic information and never

considered the practical importance of every single bug.

VI. CONCLUSION

This paper introduced our dataset of high impact bugs which

was created by manually reviewing four thousand issue reports

from four open source projects: Ambari, Camel, Derby and

Wicket. In the future, we would like to further analyze high

impact bugs using the dataset, improve the existing MSR

techniques, try to build a new prediction model, for instance,

to suggest who should fix the highest impact bug, and so on.

ACKNOWLEDGMENT

This work is conducted as part of Grant-in-Aid for Sci-

entific Research: (C) 24500041, Grant-in-Aid for Challenging

Exploratory: 26540029, Grant-in-Aid for Young Scientists: (B)

25730045, and the Program for Advancing Strategic Inter-

national Networks to Accelerate the Circulation of Talented

Researchers by Japan Society for the Promotion of Science.

REFERENCES

[1] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 20, no. 3, pp.
10:1–10:35, Aug. 2011.

[2] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering (ICSE ’10) - Volume 1, 2010, pp. 45–54.

[3] P. Agarwal and A. P. Agrawal, “Fault-localization techniques
for software systems: A literature review,” SIGSOFT Softw. Eng.
Notes, vol. 39, no. 5, pp. 1–8, Sep. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2659118.2659125

[4] Y. Kashiwa, H. Yoshiyuki, Y. Kukita, and M. Ohira, “A pilot study
of diversity in high impact bugs,” in Proceedings of 30th International
Conference on Software Maintenance and Evolution (ICSME2014), 0
2014, pp. 536–540.

[5] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan, “High-
impact defects: A study of breakage and surprise defects,” in Proceed-
ings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering (ESEC/FSE ’11),
2011, pp. 300–310.

[6] T.-H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan, “An empirical
study of dormant bugs,” in Proceedings of the 11th Working Conference
on Mining Software Repositories (MSR ’14), 2014, pp. 82–91.

[7] H. Valdivia Garcia and E. Shihab, “Characterizing and predicting
blocking bugs in open source projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories (MSR ’14), 2014,
pp. 72–81.

[8] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports
via text mining: An industrial case study,” in Proceedings of the 7th
Working Conference on Mining Software Repositories (MSR ’10), 2010,
pp. 11–20.

[9] A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing
performance bugs,” in Proceedings of the 10th Working Conference on
Mining Software Repositories (MSR ’13), 2013, pp. 237–246.

[10] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: A case study on firefox,” in Proceedings of the 8th Working
Conference on Mining Software Repositories (MSR ’11), 2011, pp. 93–
102.

[11] A. Misirli, E. Shihab, and Y. Kamei, “Studying high impact fix-inducing
changes,” Empirical Software Engineering, pp. 1–37, February 2015,
published online.

[12] I. Molyneaux, The Art of Application Performance Testing : Help for
Programmers and Quality Assurance. O’Reilly Medea, 2009.

521

