
An Investigation on Software Bug-Fix Prediction
for Open Source Software Projects

-A Case Study on the Eclipse Project -
Akinori Ihara∗, Yasutaka Kamei†, Akito Monden∗, Masao Ohira‡, Jacky Wai Keung§,

Naoyasu Ubayashi† and Ken-ichi Matsumoto∗
∗ Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Japan

Email: (akinori-i, akito-m, matumoto)@is.naist.jp
† Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan

Email: (kamei, ubayashi)@ait.kyushu-u.ac.jp
‡ Wakayama University, 930, Sakaedani, Wakayama, Japan

Email: masao@sys.wakayama-u.ac.jp
§ Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Email: Jacky.Keung@comp.polyu.edu.hk

Abstract—Open source software projects (OSS) receive a large
number of bug reports from various contributors and developers
alike, where many planned to be fixed by OSS developers. Given
the next release cycle information, OSS users can be more
effective and flexible in planning and to fix the bugs that are not
to be fixed in the next release. It is therefore vital for OSS users
to learn which bugs the OSS developers will fix, unfortunately
such information may not be readily available, nor there is a
prediction framework exists to serve such an important purpose.
In this study, we would like to answer the question Will this
bug be fixed by the next release? , this is addressed by building
a bug fixing prediction model based on the characteristics of
a bug-related metric and by incorporating the progress of bug
fixing measures such as status, period and developer metrics to
provide aggregated information for the OSS users. The proposed
model calculates the deviance of each variable to analyze the
most important metrics, and it has been experimented using
a case study with Eclipse platform. Result shows a bug fixing
prediction model using both base metrics and state metrics
provide significantly better performance in precision (139%) and
recall (114%) than the standard model using only base metrics.

I. INTRODUCTION

Large Open Source Software (OSS) developers do not fix
all bugs which reported to the project. Because, the number of
bug reports is too many for the project. For example, Mozilla
Firefox project developers do not fix 84.4% bugs (29,399 bugs
/ 34,778 bugs) 1

Even if a company developer contacts to OSS developers
to ask to fix a bug, they will not quickly answer response it
except in the case of be claimed the same problem by many
users [13]. Therefore, when company developers detect the
bug in OSS, they need to know whether the OSS developers
will fix the bug by the next release. Even if the OSS developers
will not fix the bug, the company developers need to consider
fixing the bug themselves.

1We checked it at Feb 2011.

In this study, we reveal that the important metrics to know
whether OSS developers will fix the bug by the next release
from the characteristics metrics of the bug and the progress
metrics of the bug-fix, and then build a bug-fix prediction
mode based on the metrics. Using large OSS project (Eclipse
platform), we answer two research questions.

RQ1: What metrics are the most important to determine
in the characteristics of the bug and the progress of the
bug-fix?

RQ2: How accurate is the bug-fix prediction model
built?

Many researchers have proposed models to predict how long
to take developers to fix bugs [6][10][11][21]. They use the
characteristics metrics (e.g. component, priority) of the bug
to build the model. On the other hand, we try to build the
model whenever company developers can predict how long
OSS developers need to fix bugs. Therefore, we use not only
the characteristics metrics of the bug, but also the progress
metrics (fixer, change of bug info, period from the reported
time) of the bug fixing.

In our experiment, the model predicts the bug will be fixed
in 3 month from the predicted date2. And the model is built
based on the characteristics metrics of the bug and the 3 kinds
of progress metrics (status, period, developer) of the bug-fix.
Status metrics mean the state of the bug in predicted date, and
the period to the predicted date from the reported date. Period
metrics mean the reported date, and the period from changing
the bug report to the predicted date. Developer metrics mean
reporter’s name, assignor’s name, and assignee’s name.

This paper is laid out as follows. Section 2 describes

2OSS project will announce at least 3 months before release date.

SATA Workshop

2012 19th Asia-Pacific Software Engineering Conference Workshops

1530-1362/12 $26.00 © 2012 IEEE
DOI 10.1109/APSEC.2012.86

112

2012 19th Asia-Pacific Software Engineering Conference

1530-1362/12 $26.00 © 2012 IEEE

DOI 10.1109/APSEC.2012.86

112

related work and the motivation of our study. Section 3
presents the bugs which were fixed in OSS project. Section 4
provides the design of our experiment, and Section 5 gives the
results. Section 6 discusses the results of the experiment and
developer activity after becoming committers. Finally, section
7 concludes the paper and presents our future work.

II. RELATED WORK

Software developers sometimes take a long time to fix
bugs. [3][4][12]. Therefore, many researchers have proposed
a method to predict time to fix bugs for making software test
plan or software release plan [6][7][10][11][21].

Hewett et al. [10] presented method to predict time to fix
bugs based on the characteristics metrics of the bug. Also,
Cathrin et al. [21] presented method to predict it based on the
time to fix the similar bugs. However, they target only fixed
bugs (about 8% bugs in Mozilla Firefox), because they focus
on predicting how long developers take to fix bugs. On the
other hand, we target on finding all the bugs (both fixed bugs
and not fixed bugs).

Philip et al. [7] presented method to predict whether devel-
opers should respond to the bug reported to a project. Espe-
cially, Hooimeijer et al. [11] focus on OSS projects, because
OSS developers decide to fix or not to fix in their project.
Some of the bugs (UNFIXED BUGS) were not responded by
OSS developers because of some reasons (e.g. They cannot
catching the cause of the bugs.) If OSS developers know that
the bug is UNFIXED BUGS, they do not need to take time
to respond. However, company developers need to fix the bug
by themselves. So, it is not enough for company developers
to predict whether the bug is the treated bugs or not.

Existing research uses only the feature of the bug (base
metrics) to predict time to fix bugs. However, company devel-
opers sometimes want to know when the bugs will be fixed by
OSS developers. Then, the progress of the bug such as status
metrics will contribute to build the bug-fix prediction model.
Also, existing research helps for developers which predict time
to fix the bug, and they target a just reported bug. On the
other hand, we help users which predict bugs fixed by OSS
developers and we target both a just reported bug and a fixing
bug.

III. BUG FIXING PROCESS IN AN OSS PROJECT

In this section, we present the bug fixing process in an OSS
project and the differences between FIXED BUGS (which are
fixed by OSS developers) and NOT FIXED BUGS (which are
not fixed by OSS developers).

A. Bug Fixing Process
Most open Source projects use bug tracking system to

unify management of bugs which were found and reported by
developers and users in their projects. A bug tracking system
helps an open source project to know the progress of bug
fix. Popular bug tracking systems include Bugzilla3, Trac4,

3Bugzilla: http://www.bugzilla.org/
4Trac: http://trac.edgewall.org/

RedMine5 and so on. When developers and users report a bug,
they note a basic information (e.g. product, version, priority,
and severity), and a bug detail information (which is the way
to find the bug). After that, bug tracking system manages the
progress of the bug fix, and the discussion between developers
and users.

Figure 1 shows the bug fixing process.

���������������

	

�������

�������	�
��

����������������������������

�������

����	��������������	����������
��� �������	���
���������

��	�����	�����	�����	���
������� ��������

��������

�������
�������
�������
�������

��

Fig. 1. Common bug modification process.

Judging. Assignors judge whether OSS developers should
fix the bug which was reported to OSS projects.
Fixing. Assignors assign a bug fix task to the assignee. And

the assignee fixes the bug.
Verifying. Reviewers verify the bug which was fixed by the

assignee. Or the reviewers verify whether the suspended bug
should be fixed.
Suspending. Assignor or assignee do not fix the bug for

the following reason. (1) They cannot replicate the bug. (2) If
they fix the bug or add new function, OSS performance will
be worse. (3) They cannot contact to the reporter.

B. Bug Fixing Pattern
Developers and users report a lot of bugs to OSS projects.

There are 3 types of bugs (FIXED BUGS, UNFIXED BUGS,
FIXING BUGS) in an OSS project.
FIXED BUGS means the bugs which are finished verifying

after fixing them. In figure 1, the bug report status changes to
Complete after Fixing and Verifying.
UNFIXED BUGS (NOT FIXED BUGS) means the bugs

which are judged as not to fix by OSS developers, because of
the cause of the bugs are unknown or being not possible to
replicate the issue. In Figure 1, the bug report status transits
to Complete after Suspending and Verifying.
FIXING BUGS (NOT FIXED BUGS) means the bugs

which are fixing or suspending. In figure 1, the bug report
status has not transited to Complete yet.

In this paper, we built a model to predict the bugs which
will be FIXED BUGS by the next release.

IV. RESEARCH QUESTION

To predict the bugs which will be FIXED BUGS based on
the characteristics metrics of bugs and the kinds of progress
metrics of the bug fix, we have two research questions. In this
section, we present the motivation of the research questions

5RedMine: http://www.redmine.org

113113

and the method related to the experimentation of the Rsesearch
Questions.

RQ1: What metrics are the most important to determine
in the characteristics of the bug and the progress of the bug
fix?

Motivation. Some of bugs will be fixed by OSS developers.
On the other hand, the remaining bugs are not fixed by OSS
developers. If company developers detect the bugs in their
product using OSS, they have to fix those bugs. However, it is
difficult for the company developers to know the bugs which
are fixed by OSS developers. Of course, company developers
will not understand the bug fix plan in the OSS project. Then,
which information in bug report should company developer
check to know the bugs which are fixed by OSS developers?
For RQ1, we analyze the most important metrics from the base
metrics and the 3 kinds of progress metrics (status, period,
developer) to predict the bug which will be fixed by the next
release.
Approach. We calculate the deviance of each variable to

analyze the most important metrics. The deviance means the
changed amount of the likelihood (the rate to be output the
correct result by a model), when new variable is added to the
model. Therefore, the bigger deviance, the more the metrics
contribute to the model. In this study, we summarize every
deviance in each metrics, and then we divide the deviance
of the alternate hypothesis (the model built based on some
variables) into the deviance of the null hypothesis (the model
based on intercept) to understand how much the metrics
contributes to the model.

RQ2: How accurate is the bug-fix prediction model built?

Motivation. Company developers have to identify whether
the bug will be fixed by OSS developers based on the
information noted bug reports. For RQ2, we built a bug-fix
prediction model using the base metrics and the 3 kinds of
progress metrics, and evaluated the model.
Approach. We built 4 bug-fix prediction models. Then we

compare them. One is the model using only the base metrics.
Another is the model using each progress metrics. Another is
the model using all metrics (the base metrics and the progress
metrics). The other is the model using one metrics which is
chosen from the base, status, period, and developer metrics
randomly.

To predict bugs which will be fixed by the next release, we
use a logistic regression model [2][15][19]. Because, our data
set include the nominal scale data and non-normal distribution
data. The objective variable is whether or not a bug will be
fixed by the next release (i.e., FIXED BUG or NOT-FIXED
BUG). The model identify FIXED BUG, when the output
(continuous value: 0-1) of the model is over a threshold (0.5).
However, when the correlation of two variables is more than
0.8, we will remove the one to avoid multicollinearity.

The evaluation metrics are precision, recall and F1

value [8][14]. The precision means the ratio of the number
of bugs which actually were fixed by the next release to
the number of predicted bugs which were fixed by the next
release. The recall means the ratio of the number of bugs which
became actually were fixed by the next release to the number
of bugs which never been fixed by the next release. F1-value
is a combined value of recall and precision as follows.

F1−value =
2×Recall × Precision

Recall + Precision

The evaluation method is 10-fold cross-validation [5]. First,
the dataset are divided into 10 equal parts. The model is built
on 9/10 of the dataset (i.e. the training data), and then evalu-
ated on the remaining 1/10 of the dataset (i.e. the independent
testing data). This experiment is repeated 1000 times. We
calculate the median of the evaluation result (precision, recall,
and F1-value) in each experiment, and then we compare the
result in each model.

V. METRICS FOR BUILDING THE BUG-FIX PREDICTION
MODEL

We use 41 variables to build a bug-fix prediction model.
Table I shows the variables. In the existing research, they have
used only base metrics to build the model. On the other hand,
we also use the 3 kinds of the progress metrics (status, period,
and developer).

A. Base metrics and Progress metrics
Base metrics. Base metrics indicates a general metrics

which most of existing researches use to predict the bug fix
time [10][11]. This metrics includes the characteristics of bugs
(e.g. Component, OS, Hardware, and Priority), the number of
comments (NumComment), and the number of attachments
(e.g. patch, screenshot).
Status metrics. Status metrics indicates the state on the

predicted date, and the status history change from reported
date to predicted date. This metrics includes the bug state on
the predicted date (CurrentStatus), the presence or absence of
assignee (ChAssignee), the number of transition in each status
(NumModifying, NumSuspending), and the period from the
status changed date to the predicted date (PeriodOnStatus).
When the status of bug is Judging or Suspending, OSS
developers will take a long time to assign the bug and to start
the bug fixing [1][18]
Period Metrics. Period metrics include the reported year

(ReportedYear), the reported month (RepotedMonth), the pe-
riod from base metrics (e.g. component, priority) the period
from the changed date to the predicted date (LastComponet-
nTime, LastPriorityTime). If the base metrics have never
changed, the period is from the reported date to the predicted
date. Reporter sometimes reports the wrong content. Then OSS
developers will take a long time to fix bugs, because they have
to look for the appropriate assignee again.
Developer Metrics Developer Metrics includes the reporter

(Reporter), the assignee (Assignee), the assignor (Assignor),
and the number of changed assignee (NumAssignee). In OSS

114114

Release date Predicted date Release date

Judging Fixing

BugID:1

BugID:2

BugID:3

BugID:4

Fig. 2. Target bug reports.

project, a reporter sometimes fixes a bug by himself. In this
case, the bug will be fixed soon. Because, reporter has known
the cause of the bug [13]

B. Nominal scale in our experiment

We use some nominal scale variables such as component
name, reporter name. In our experiment, the nominal scale
is expanded dummy variable to build the bug-fix prediction
model. However, when Component and Reporter are expanded
as dummy variable, the number of variables is too many. If
we use many dummy variables, the prediction accuracy of
the model will go down. Because it is difficult to build the
appropriate model [17][20]. Therefore, we try that top 3 of
the highest appearance frequency are made dummy variables
and the others one are grouped together as others . For
example, Component includes com-A, com-B, com-C, com-D
and com-E in order. In this case, com-A, com-B and com-C are
made dummy variables, and com-D, and com-E are changed

others .

VI. EXPERIMENT

In this section, to understand effective metrics to predict
the bugs will be fixed by the next release, we build the bug-
fix prediction model using the base metrics and the progress
metrics.

A. Experimental overview

We target bugs which developers and users reported after
last release. Using the bugs, we predict whether they are fixed
by the next release in 3 months. Figure 2 shows the target
bugs in our experiment. Also, we focus on the bugs which
have not been fixed by the predicted date (e.g. BugID:2 and
3 in figure 2). Bug ID 2 is FIXED BUGS, and also Bug ID
3 is NOT FIXED BUGS. The model identifies bugs which
will be fixed by the next release.

B. Target Project

Using Eclipse platform project, we find the effective metrics
to predict the bugs which will be fixed by the next release.
Table II shows the number of bugs in the target projects. In
this section, we target the project which (1) use Bugzilla as
the bug tracking system (2) release on a regular basis (3)have
enough bugs to compare the results in each project.

TABLE II
SUMMARY OF THE TARGET DATA.

Number of Bugs
All bugs 2,276
FIXED BUGS 183
NOT FIXED BUGS 2,093

TABLE III
DEVIANCE EXPLAINED IN EACH CATEGORY METRICS.

Deviance
base 27.19
status 11.50
period 2.04
developer 3.27
all 44.00

C. Experimental results
RQ1: What metrics are the most important in the char-

acteristics of the bug and the progress of the bug-fix?
We calculated the deviance of each metrics to find the most

important metrics for the model. Table III shows the deviance
of each metrics and the deviance of whole metrics. Also,
table IV shows top 10 variables which have the most highest
deviance in each project.

In the analysis of the metrics deviance, we found that the
base metrics is the most important metrics to build the model.
Also, status metrics is the second most important metrics to
build the model.

In the analysis of the variable deviance, we found that
one of the most important variables is whether the bug’s
priority is low or general (Priority low, Priority general).
OSS developers have a tendency to put off the low priority
bugs [9][16]. Also, another one of the most important variables
is about bug’s status such as PeriodOnStatus Modifying 0-
30 and CurrentState Judging. For example, if the bug’s status
transits to new status early, OSS developer will fix the bug
soon. I will discuss the period in this discussion section.

RQ2: How accurate is the bug-fix prediction model built?
Table V shows the evaluation result (precision, recall, and

F1-value) of the bug-fix prediction model and the model built
using one of the metrics randomly. And, we compare the
evaluation result of the bug-fix prediction model which has
the highest F-1 value to the evaluation model based on only
base metrics to the bug-fix prediction model built using one of
the metrics randomly. As a result, the F-1 value of the model
built using multiple metrics including the base metrics is better
than the model built using in each metrics. And, the model
based on the base metrics and the status metrics is the highest
F1-value in both projects. We found that precision and recall
are about 31% and about 71% in the Eclipse platform project.
The evaluation result of the model based on Base metrics and
Status metrics improves than the result of the model based
on only the base metrics. Precision improves about 39%, and
recall improves about 29%. Also, the evaluation result of the
model based on Base metrics and Status metrics improves than

115115

TABLE I
SUMMARY OF THE METRICS.

Metrics Variable name Scale Summary

base

NumDescriptionWord interval the number of words in bug report’s description
NumAttachment interval the number of attached files in a bug report
Keywords nominal presence or absence of the bug’s keyword
Component nominal the name of component which bug relates to
Priority nominal level of priority (high, normal, low)
Severity nominal level of severity (high, normal, low)
Os nominal the name of operating system which reporter uses
Hardware nominal the type of hardware which reporter uses (e.g. x86, PowerPC)
Milestone nominal the name of milestone which the bug relate to
NumComment interval the number of comment between developers and users
Cc interval the number of persons which have received the update of the bug report
Blocks interval the number of bugs which block the bug fix
Dependson interval the number of bugs which depends on the bug

status

NumModifying interval the number of transiting to Modifying
NumSuspending interval the number of transiting to Suspending
ChAssignee nominal presence or absence of the bug’s assignor
CurrentStatus nominal the state of bug on the predicted date
PeriodOnStatus interval the period from the date changed bug’s state to the predicted date

period

ReportedYear nominal reported year
ReportedMonth nominal reported month
LastAttachmentTime interval the period from date attached new files to the predicted date
LastKeywordsTime interval the period from date changed the the keyword to the predicted date
LastComponentTime interval the period from date changed the target component to the predicted date
LastPriorityTime interval the period from date changed the priority to the predicted date
LastSeverityTime interval the period from date changed the severity to the predicted date
LastOsTime interval the period from date changed the target OS to the predicted date
LastHardwareTime interval the period from date changed target hardware to the predicted date
LastMilestoneTime interval the period from date changed the milestone to the predicted date
LastCommentTime interval the period from date submitted new comment to the predicted date
LastCcTime interval the period from date added/deleted email address in CC list to the predicted date
LastBlocksTime interval the period from date added/deleted a bug blocking the bug to the predicted date
LastDependsonTime interval the period from date added/deleted an assignee to the predicted date
LastAssigneeTime interval the period from date added/deleted a depending on the bug to the predicted date
RepNowTime interval the period from the reported date to the predicted date ()

developer

Reporter nominal reporter’s email address
Assignee nominal assignee’s email address
Assignor nominal assignor’s email address
Reporter Assignor nominal reporter and assignor is same or not
Assignor Assignee nominal assignor and assignee is same or not
Reporter Assignee nominal reporter and assignee is same or not
NumAssignee interval the number of the changed assignee

TABLE IV
DEVIANCE OF TOP 10 VARIABLES.

No. Variables
1 Milestone 3.5M7
2 CurrentState Judging
3 CurrentState Modifying
4 Milestone 3.5
5 RepNowTime
6 Priority general
7 Component IDE
8 Modifying 0-30
9 Reporter dev03

10 Priority low

the result of the model based on the one metrics which is
chosen from the base, status, period, and developer metrics
randomly. Precision improves from about 29%, and recall
improves from about 25%.

In our experiment, we found that the precision was not so
high (Eclipse platform: about 31%). Because, the number of
NOT FIXED BUGS is much more than the number of FIXED

BUGS. If output of the logistic (threshold) is more than 0.5,
the precision improves. For example, when the threshold is
0.8, precision and recall are about 43% and about 59% in the
Eclipse platform project. However, the threshold should not
be too high, because recall will go down.

VII. DISCUSSION

A. High possibility of the fixed bug

As a result of RQ2, we found that the bug-fix prediction
model based on the base metrics and the status metrics has
higher accuracy than the bug-fix prediction model based on
only base metrics. Also, we found that status metrics is
important metrics to predict the bug will be fixed by the next
release. Using odds ratio (OR), we analyze whether we can
know the bug will be fixed by the next release, if we use the
status metrics such as the status of bugs and the period from
the date changed status to the predicted date. Odds ratio means
scale to compare the likelihood of a consequence between the
2 groups. Odds ratio is calculated according to the following

116116

TABLE V
BUG-FIX PREDICTION RESULT.

Precision Recall F1-value
base 0.23 0.62 0.33
status 0.24 0.66 0.35
period 0.18 0.52 0.27

Predicive model developer 0.31 0.49 0.29
base+status 0.31 0.71 0.43
base+period 0.26 0.69 0.38
base+developer 0.24 0.66 0.35
all metrics 0.25 0.78 0.38

Random 0.24 0.57 0.33
Percentage of improvement from prediction 1.39 1.14 1.31model (only base metrics) (%)*
Percentage of improvement from random 1.29 1.25 1.30prediction (%)**

* This indicates how accuracy the evaluation result of the bug-fix prediction model based on the base metrics and the status
metrics improve more than the bug-fix prediction model based on only the base metrics.

** This indicates how accuracy the evaluation result of the bug-fix prediction model based on the base metrics and the status
metrics improve more than the andom prediction.

equation.

OR =
p/(1− p)

q/(1− q)

p means the rate of bugs with any status and any period from
the date changed status to the predicted date. q means the rate
of bugs with the other status and the other period from the
date changed status to the predicted date. For example, 138
FIXED BUGS and 1,690 NOT FIXED BUGS with Judging
have passed in 1 month from the date changed the status in the
predicted date in Eclipse project. In this case, p is about 0.08
(138
138+1690 ≈ 0.08). 45 FIXED BUGS and 403 NOT FIXED

BUGS with Judging have passed for more than 1 month from
the date changed the status in the predicted date in Eclipse
project. In this case, q is about 0.10 (45

45+403 ≈ 0.11). Then,
Odds ratio of the bug whose status is Judging and which has
passed in 1 month is 0.73.

Table VI show the result of Odds ratio. 3rd line means p
value, and 4th line means q, 5th line means Odds ratio. When
the Odds ratio is more than 1, the bugs with any status and
any period from the date changed status are more likely to be
fixed by the next release than the other bugs. For example,
when target bug is with Judging have passed in 1 month (0-
30) from the date changed the status, the Odds ratio is 0.73. As
a result, the bug is less likely to be fixed by the next release,
because the score is less than 1.

Table VI shows the Odds ratio of the bugs with any status
and any period from the date changed status. As a result,
the longer the bugs with Judging have passed from the date
changed to the status, the more the bugs is likely to be fixed
by the next release in Eclipse platform project..

When the target bugs’ status is Fixing, almost bugs’ odd
ratio is more than 1. Therefore the bugs are more likely to be
fixed by the next release than the other bugs. Especially, the
bugs with Fixing which have passed in 1 month from changing
the status is more likely to be fixed. We also found it in RQ1.
On the other hand, bugs with Suspending are more likely to be

fixed by the next release than the bugs with Judging or Fixing
in Eclipse platform project. However, bugs with Suspending
is less likely to be fixed.

In brief, the bugs with Judging or Fixing are likely to be
fixed by the next release. On the other hand, the longer the
bugs with Suspending have passed from the date changed to
the status, the less the bugs is likely to be fixed. The status
and the period of the bug will indicate whether bug will be
fixed by the next release.

B. Ineffective metrics for the bug-fix prediction model

As a result of RQ2, we found that the period metrics is
ineffective for the bug-fix prediction model. It may be for this
reason that we excluded the many variables which correlate
highly with the other variables to avoid multicollinearity.

Also, we found that the developer metrics is ineffective for
the bug-fix prediction model. It may be for this reason that
the number of the target developers (reporter, assignor, and
assignee) is a few. We focused on the top 3 developers in
each variable. And the other developers are grouped together
as “others”. Table VII shows the top 10 developers which
have reported/assigned/fixed a lot of bugs. The table shows
the developers name, the number of bug reports which the
developers have concerned, and the number of the bugs which
have finished the bug-fix by the next release. We found that
the most of bugs concerned by some developers have not
been fixed. For example, most of bugs concerned by dev02,
dev11, dev18, and dev19 have not been fixed by the next
release in Eclipse platform project. If the developer metrics has
been top 3 developers and the others such as our experiment,
the developer metrics does not so contribute to improve the
accuracy of the bug-fix prediction model. Because the fixed
bugs depends on developers. In the future, we will propose
a method to extract the developers which contribute the bugs
fix.

117117

TABLE VI
ODDS RATIO FOR THE FIXED BUGS OR THE NOT FIXED BUGS IN EACH BUG STATE IN ECLIPSE PLATFORM PROJECT

Status Judging Fixing Suspending
Period 0-30 30-90 90-180 180- 0-30 30-90 90-180 180- 0-30 30-90 90-180 180-

p 0.08 0.10 0.36 0.57 0.42 0.42 0.11 0.30 0.07 0.07 0.04 0.00
q 0.11 0.07 0.07 0.08 0.08 0.08 0.09 0.06 0.09 0.09 0.10 0.09

Odds ratio 0.73 1.49 5.13 6.92 5.09 5.18 1.31 4.85 0.81 0.77 0.40 0.00

TABLE VII
THE NUMBER OF BUGS WHICH A DEVELOPER CONSIDERED.

Reporter Assignor Assignee

Name After changing The number of The number of Name After changing The number of The number of Name After changing The number of The number of
Name submission bugs fixed bugs name submission bugs fixed bugs name submission bugs fixed bugs

1 dev01 dev01 43 14 — other 740 46 — other 740 46
2 dev02 dev02 39 1 dev11 dev11 219 0 dev06 dev06 126 23
3 dev03 dev03 38 12 dev12 dev12 215 8 dev02 dev02 119 0
4 dev04 other 34 2 dev06 dev06 194 17 dev16 dev16 108 2
5 dev05 other 33 8 dev13 other 184 5 dev17 other 95 3
6 dev06 other 31 5 dev14 other 122 2 dev18 other 84 0
7 dev07 other 31 8 dev04 other 60 3 dev12 other 69 16
8 dev08 other 26 1 dev03 other 59 0 dev19 other 61 0
9 dev09 other 24 6 dev15 other 57 4 dev13 other 61 13
10 dev10 other 22 4 dev16 other 50 5 dev11 other 57 0

C. Threats to Validity

Existing research has tried the bug-fix time prediction used
only base metrics. We built the bug-fix prediction model
using the 4 metrics (41 variables) from only the bug tracking
system, because, it is difficult for the company developer to
extract the other metrics (e.g. Cyclomatic complexity, Code
Dependencies) from the other repository (e.g. Version control
system, Mailing list).

We tried the experiment using Eclipse platform project. In
both projects, we got the same results (RQ1: we found that
the base metrics and the status metrics are the most important
metrics to build the model. RQ2: the F-1 value of the model
built using multiple metrics including the base metrics is better
than the model built using in each metrics.). Even if we target
the other large OSS projects for our experiment, we will get
the same results. However, if we target a project which has
different feature (e.g. release frequency, small project), we will
get the different results.

In our experiment, we set that the predicted date is before 3
month of the release. Because, many large OSS project release
major version more than once a year. If company developers
set the long period (more than for 3 month) from the predicted
date to the next release, an OSS project may change the release
date. Then, they have to build the model again. On the other
hand, if they set the short period (less than for 3 month) from
the predicted date to the next release, there are few FIXED
BUGS. It is difficult to predict the bugs.

VIII. CONCLUSIONS AND FUTURE WORK

In this study, we built a bug-fix prediction model based on
the base metrics and 3 kinds of the progress metrics to identify
bugs which is fixed by OSS developers by the next release.
Using data from the Eclipse platform project, we found:

RQ1: we found that the base metrics and the status
metrics are the most important metrics to build the model.

RQ2: the F-1 value of the model built using multiple
metrics including the base metrics is better than the model
built using in each metrics.

In this study, we found that our bug-fix prediction model
can identify bugs that are fixed by OSS developers better
than existing approach manually. In fact, company developers
depend on a status of bug and some comments that are
indicated the interest of bug for OSS developers. However,
even if company developers see the status and the comments
of only a bug, it is difficult for them to know the release
plan and the development plan in OSS project. Although OSS
projects were described to establish a transparent development
process, it is actually difficult for company developer to know
them. This study will be first step to establish a transparent
development process in OSS project.

In the future, we would like to enhance the bug-fix predic-
tion model to use new metrics based on the content of the
bug-fix. Then, the prediction accuracy of FIXED BUGS will
improve.

ACKNOWLEDGMENT

This research is being conducted as a part of the Next
Generation IT Program and Grant-in-aid for Young Scientists
(B), 22700033, 2010 and (Start-up), 23800044, 2011 by the
Ministry of Education, Culture, Sports, Science and Technol-
ogy, Japan.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Pro-
ceedings of the 28th International Conference on Software Engineering
(ICSE’06), pages 361–370, 2006.

118118

[2] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-
oriented design metrics as quality indicators. In IEEE Transactions on
Software Engineering, volume 22, pages 751–761, 1996.

[3] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate
bug reports considered harmful... really? In Proceedings of the 24th
International Conference on Software Maintenance (ICSM’08), pages
337 – 345, 2008.

[4] G. Canfora and L. Cerulo. Supporting change request assignment in
open source development. In Proceedings of the 21st Symposium on
Applied Computing (SAC’06), pages 1767–1772, 2006.

[5] B. Efron. Estimating the error rate of a precision rule: improvements
on cross-validation. In Journal of the American Statical Association,
volume 78, pages 316–331, 1983.

[6] E. Giger, M. Pinzger, and H. Gall. Predicting the fix time of bugs.
In Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering (RSSE’10), pages 52–56. ACM, 2010.

[7] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Characterizing
and predicting which bugs get fixed: an empirical study of microsoft
windows. In Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering (ICSE’10), pages 495–504, 2010.

[8] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating
collaborative filtering recommender systems. In ACM Transaction
Information Systems, volume 22, pages 5–53, 2004.

[9] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and G. Robles.
Towards a simplification of the bug report form in eclipse. In Proceed-
ings of the 5th International Working Conference on Mining Software
Repositories (MSR’08), pages 145–148.

[10] R. Hewett and P. Kijsanayothin. On modeling software defect repair
time. In Empirical Software Engineering, volume 14, pages 165–186.
Kluwer Academic Publishers, 2009.

[11] P. Hooimeijer and W. Weimer. Modeling bug report quality. In Pro-
ceedings of the 22nd International Conference on Automated Software
Engineering (ASE’07), pages 34–43, 2007.

[12] A. Ihara, M. Ohira, and K. Matsumoto. An analysis method for improv-
ing a bug modification process in open source software development.
In Proceedings of the joint International and annual ERCIM Workshops
on Principles of Software Evolution and Software Evolution Workshops
(IWPSE-Evol’09), pages 135–144, 2009.

[13] A. Ihara, M. Ohira, and K. Matsumoto. Differences of time between
modification and re-modification: An analysis of a bug tracking sys-
tem. In Proceedings of the 3rd International Workshop on Knowledge
Collaboration in Software Development (KCSD’09), pages 17–22, 2009.

[14] S. Kim, E. J. Whitehead, Jr., and Y. Zhang. Classifying software
changes: Clean or buggy? IEEE Transactions Software Engineering,
34:181–196, March 2008.

[15] G. Liang, L. Wu, Q. Wu, Q. Wang, T. Xie, and H. Mei. Automatic
construction of an effective training set for prioritizing static analysis
warnings. In Proceedings of the 25th International Conference on
Automated Software Engineering (ASE’10), pages 93–102, 2010.

[16] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open
source software development: Apache and mozilla. In ACM Transactions
on Software Engineering and Methodology (TOSEM), volume 11, pages
309–346, 2002.

[17] I. Myrtveit, E. Stensrud, and U. H. Olsson. Analyzing data sets
with missing data: An empirical evaluation of imputation methods and
likelihood-based methods. IEEE Transactions on Software Engineering,
27:999–1013, 2001.

[18] S. Rastkar, G. C. Murphy, and G. Murray. Summarizing software
artifacts: a case study of bug reports. In Proceedings of the 32nd
International Conference on Software Engineering (ICSE’10), pages
505–514, 2010.

[19] Y. Takagi, O. Mizuno, and T. Kikuno. An empirical approach to char-
acterizing risky software projects based on logistic regression analysis.
In Empirical Software Engineering, volume 10, pages 495–515, 2005.

[20] H. B. K. Tan, Y. Zhao, and H. Zhang. Conceptual data model-based
software size estimation for information systems. In ACM Transaction
on Software Engineering and Methodology (TOSTEM), volume 19,
pages 1–37, October 2009.

[21] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it
take to fix this bug? In Proceedings of the 4th International Workshop
on Mining Software Repositories (MSR’07), pages 1–8, 2007.

119119

