
A Pilot Study of Diversity in High Impact Bugs

Yutaro Kashiwa Hayato Yoshiyuki
Graduate School of Systems Engineering,

Wakayama University
Email: {s141015, s151054}@sys.wakayama-u.ac.jp

Yusuke Kukita Masao Ohira
Faculty of Systems Engineering,

Wakayama University
Email: {s161018, masao} @sys.wakayama-u.ac.jp

Abstract—Since increasing complexity and scale of modern
software products imposes tight scheduling and resource allo-
cations on software development projects, a project manager
must carefully triage bugs to determine which bug should
be necessarily fixed before shipping. Although in the field of
Mining Software Repositories (MSR) there are many promising
approaches to predicting, localizing, and triaging bugs, most of
them do not consider impacts of each bug on users and developers
but rather treat all bugs with equal weighting, excepting a few
studies on high impact bugs including security, performance,
blocking, and so forth. To make MSR techniques more actionable
and effective in practice, we need deeper understandings of high
impact bugs. In this paper we report our pilot study on high
impact bugs, which classifies bugs reported to four open source
projects into six types of high impact bugs.

I. INTRODUCTION

Since increasing complexity and scale of modern software
products imposes tight scheduling and resource allocations on
software development projects, a project manager must care-
fully triage bugs to determine which bug should be necessarily
fixed before shipping. There are a number of studies relate
to triaging reported bugs correctly and/or automatically. Prior
work proposed several promising approaches, for example,
automating bug triaging [1]–[3], detecting duplicate bugs [4]–
[6], and understanding the rationale for the reassigning and
re-opening of bugs [7]–[9]. In these studies, however, each
bug are equally treated without considering its impacts on bug
management process and software products. Although some
important attributes included in a bug report (e.g., priority and
severity) are used in the previous studies, they dose not answer
why they are important. In other words, the previous studies do
not carefully consider each bug in terms of why it is important
to whom?. To make MSR techniques more actionable and
effective in practice, we need deeper understandings of high
impact bugs.

In this paper we report our pilot study on high impact bugs,
which classifies bugs reported to four open source projects
into six types of high impact bugs. In the case study, one
hundred bug reports are manually inspected for each project
and are classified into six types of high impact bugs based on
previous studies [10]–[15] which focus on high impact bugs.
Although the previous studies [10]–[15] only focused on one
or two aspects of high impact bugs, our case study aims to
reveal distributions of high impact bugs in reported bugs and
overlapped relationships among high impact bugs.

In what follows, Section I provides a literature review
on six types of high impact bugs and we roughly classify
them into process and product bugs. Section III describes our

case study which analyzes high impact bugs and relationships
among them in four open source software projects (Accumulo,
Derby, Qpid, and Thrift). Section IV discusses our findings and
limitations of our case study. Section V concludes the paper
and describes our future work.

II. LITERATURE REVIEW ON HIGH IMPACT BUGS

Since a bug can highly impact on a variety of activities in
the bug management process, products and end-users, several
recent studies [10]–[15] have started with exploring high
impact bugs such as performance, security, blocking bugs and
so forth. In this paper, we first classify studies on high impact
bugs into two types: process and product. A bug can especially
impact on a bug management process in a project. For instance,
a security bug must be faster fixed than other bugs. Developers
would need to change the order to fix bugs when a security
bug is reported to the project. A bug can also affect software
products as well. For instance, a performance bug can directly
decrease the satisfaction of products’ users. In other words,
a bug impacted on a bug management process is a matter
for developers and a bug impacted on products is a matter
of users. In what follows, we review studies on high impact
bugs in terms of process and products.

A. Process

Bugs impacted on a bug management process include
surprise bugs [10], dormant bugs [11], and blocking bugs [12].

1) Surprise bugs: A surprise bug is a new concept on
software bugs, which was introduced by Shihab et al. in [10]. It
can disturb the workflow and/or task scheduling of developers,
since it appears in unexpected timing (e.g., bugs detected in
post-release) and location (e.g., bugs found in files that rarely
change in pre-release). A case study of a proprietary, telephony
system which has been developed for 30 years [10] showed
that the number of surprise bugs are very small (found in 2 %
of all files) and the co-changed files and the amount of time
between the latest pre-release change and the release date can
be good indicators of predicting surprise bugs.

2) Dormant bugs: A dormant bug is also a new concept
on software bugs and defined as “a bug that was introduced
in one version (e.g., Version 1.1) of a system, yet it is Not
reported until AFTER the next immediate version (e.g., is
reported against Version 1.2 or later)” in [11]. [11] showed
that 33 % of the reported bugs in Apache Software Foundation
(ASF) projects were dormant bugs and were fixed faster than
non-dormant bugs. It indicates that dormant bugs also affect
developers’ workflow in fixing assigned bugs in order to give
first priority to fix the dormant bugs.

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.89

537

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.89

536

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.89

536

3) Blocking bugs: A blocking bug is a bug that blocks
other bugs from being fixed [12]. It often happens because of
a dependency relationship among software components. Since
a blocking bug inhibit developers from fixing other dependent
bugs, it can highly impact on developers’ task scheduling since
a blocking bug takes more time to be fixed [12] (i.e., a fixer
needs more time to fix a blocking bug and other developers
need to wait for being fixed to fix the dependent bugs).

B. Products

Bugs impacted on software products include security bugs
[13], performance bugs [14], and breakage bugs [10].

1) Security bugs: A security bug can raise a serious prob-
lem which often impacts on uses of software products directly
[13]. Since Internet devices (e.g., smartphones) and their users
are increasing every year, security issues of software products
are of interest to many people.

2) Performance bugs: A performance bug is defined
as “programming errors that cause significant performance
degradation” [14]. The “performance degradation” contains
poor user experience, degrade application responsiveness,
lower system throughput, and waste computational resources
[16], [17]. [14] showed that a performance bug needs more
time to be fixed than non-performance bug so that performance
bugs affect users for a long time.

3) Breakage bugs: A breakage bug is “a functional bug
which introduced into a product because the source code is
modified to add new features or to fix existing bugs” [10].
Breakage bugs heavily impact on users who rely on the product
in their daily operations.

III. CASE STUDY

This section describes our case study on high impact bugs
that aims to reveal the distribution of each type of high impact
bugs and overlapped relationships among the six types of high
impact bugs.

A. Dataset

First we selected four open source projects (Accumulo: 1,
Derby2, Qpid3 and Thrift4) from Apache Software Foundation
(ASF) projects which use JIRA 5 for tracking and managing
bugs and issues. An issue report tracked by JIRA has rich
information for fine-grained analysis, compared to Bugzilla. It
records versions affected by a bug and fixed versions so that
we can identify dormant bugs.

Second we used several criteria to create a dataset for anal-
ysis, because reports in JIRA include requests for new features
and enhancements and in this study we should not analyze

1Accumulo: a high performance data storage and retrieval system with cell-
level access control, http://accumulo.apache.org/

2Derby: a relational database management system,
http://db.apache.org/derby/

3Qpid: an open internet protocol for reliably sending and receiving mes-
sages, http://qpid.apache.org/

4Thrift: an interface definition language and binary communication protocol,
http://thrift.apache.org/

5JIRA: an issue tracking product developed by Atlassian,
https://www.atlassian.com/software/jira

TABLE I. DISTRIBUTIONS OF PROCESS AND PRODUCT BUGS

Project Subset # of bugs avg. days SD

Accumulo

Prc ∗ Prd 6 79.0 120.2
Prc ∗ Prd 39 28.5 72.2
Prc ∗ Prd 9 28.4 54.7
Prc ∗ Prd 46 44.7 86.4

Derby

Prc ∗ Prd 21 152.6 222.4
Prc ∗ Prd 28 296.2 548.1
Prc ∗ Prd 15 23.7 25.6
Prc ∗ Prd 36 199.0 472.3

Qpid

Prc ∗ Prd 9 47.2 85.1
Prc ∗ Prd 24 86.7 162.4
Prc ∗ Prd 5 113.2 152.3
Prc ∗ Prd 62 43.0 131.2

Thrift

Prc ∗ Prd 4 114.6 153.2
Prc ∗ Prd 17 62.0 135.7
Prc ∗ Prd 6 188.9 278.7
Prc ∗ Prd 73 73.5 134.3

Prc: Process, Prd: Product, avg. days: average days to fix a bug

reports not relate to bugs. We selected bugs in JIRA which
meet the following conditions: (1)Type: Bug or Improvement,
(2) Status: RESOLVED or CLOSED, (3) Resolution: Fixed,
(4) Affects Version/s: other than None (i.e, this condition is
to identify a dormant bug), (5) there is a corresponding commit
to fix a bug (i.e, this condition is to identify a surprise bug).

B. Study Method

For each project, we randomly chosen one hundred bug
reports from the dataset and three of the authors indepen-
dently reviewed them (i.e., a reviewer read four hundred bug
reports in total). The reviewers tagged keywords (e.g., Surprise,
Dormant, Blocking, Security, Performance, and Breakage) on
each bug report. Multiple tags were allowed for a single bug
report. After the review session, the three reviewers brought
together their review results and discussed differences of
tagged keywords between the reviewers. Although the review
results were almost the same among the reviewers, some of
bugs were judged differently. In particular, the reviewer had to
judge performance, security and breakage bugs (i.e., product
bugs) subjectively to some extent since there are no established
definitions to detect performance, security and breakage bugs
while surprise, dormant, blocking and breakage bugs can be
semi-automatically identified by the definitions in previous
studies [10]–[12]. If the reviewers found differences in the
review results, they reviewed target bug reports together and
discussed differences of understandings of the bugs among the
reviewers until reaching a common understanding. After the
discussion session, one or more keywords were tagged to four
hundred bug reports in the four target projects.

C. Results

1) Process bugs vs. Product bugs: According to the classi-
fication of high impact bugs in Section I, for each project we
first divided randomly selected one hundred bugs into process
bugs and product bugs. We found that there were not only
process bugs and product bugs but also bugs which belong
to process and product bugs. Table I shows the number of
process and product bugs, average days to fix a bug in each
project, and the standard deviation of fixing time. Figure 1 is
an example of relationships among process and product bugs.
As we expected before the case study, in all the projects, the

538537537

Product
(Prd)

 Prc*Prd

Process
(Prc)

Prc*Prd

28�
15�

21�

Prc*Prd�

Derby�

Prc*Prd 36�

Fig. 1. Relationship among process and product bugs in Derby

Sur*Dor*Bl
�

Sur*Dor*Bl

Sur*Dor*Bl�

18�

16� 4�

3�

1

Sur*Dor*Bl�

Sur*Dor*Bl�

1�

Sur*Dor*Bl�

Dormant
(Dor)

Blocking
(Bl)�

Surprising
(Sur)�

Derby:Process�

Sur*Dor*Bl� 57�

Fig. 2. Relationship among process bugs in Derby

number of high impact bugs was smaller than other bugs which
are not high impact bugs (i.e., Prc ∗ Prd in Table I). Of high
impact bugs, product bugs (i.e., Prc ∗ Prd) were dominant
in all the projects. Particularly in Accumulo, the number of
product bugs was 39, much larger than the other projects.
About the average days to fix a bug, we cannot observe a
consistent feature among the target projects and between the
subsets.

2) Process bugs: In order to deeply look at high impact
bugs, next we analyze process bugs which include surprise,
dormant, and blocking bugs. Table II shows distributions of
the six kinds of high impact bugs in process bugs and product
bugs. It also shows the average days to fix a bug by each
category. Note that in the following analysis we do not consider
overlapped relationships between process and product bugs as
did in the previous analysis. In this analysis, one hundred bug
reports are divided into process bugs or others. As described
earlier, process bugs are categorized into three kinds of high
impact bugs: Surprise, Dormant, and Blocking bugs. Figure
2 is an example of relationships of high impact bugs among
process bugs.

From Table II, we can see that Derby and Qpid
have many surprise bugs (i.e., Sur ∗Dor ∗ Bl) and we can
also see that Accumulo and Derby have many dormant
bugs (i.e., Sur ∗Dor ∗ Bl). Surprise and dormant bugs (i.e.,
Sur ∗Dor ∗ Bl) were not so many but observed in all the
projects.

TABLE II. DISTRIBUTIONS OF SIX KINDS OF HIGH IMPACT BUGS

Subset
Accu

Derby Qpid Thrift
mulo

of

Sur ∗ Dor ∗ Bl 5 18 18 12
Sur ∗ Dor ∗ Bl 29 16 7 7
Sur ∗ Dor ∗ Bl 4 4 2 1

Proc Sur ∗ Dor ∗ Bl 7 3 1 2
ess Sur ∗ Dor ∗ Bl 0 1 1 0

Sur ∗ Dor ∗ Bl 3 1 0 1
Sur ∗ Dor ∗ Bl 0 0 0 0
Sur ∗ Dor ∗ Bl 52 57 71 77

bugs Sec ∗ Per ∗ Br 8 6 6 4
Sec ∗ Per ∗ Br 7 7 7 5
Sec ∗ Per ∗ Br 0 19 1 1

Prod Sec ∗ Per ∗ Br 0 0 0 0
uct Sec ∗ Per ∗ Br 0 3 0 0

Sec ∗ Per ∗ Br 0 1 0 0
Sec ∗ Per ∗ Br 0 0 0 0
Sec ∗ Per ∗ Br 85 64 86 90
Sur ∗ Dor ∗ Bl 39.5 215.7 130.9 80.7
Sur ∗ Dor ∗ Bl 20.0 256.6 26.4 54.2
Sur ∗ Dor ∗ Bl 106.7 67.7 7.2 0.1

Proc Sur ∗ Dor ∗ Bl 20.4 117.5 63.9 416.9
ess Sur ∗ Dor ∗ Bl — 24.3 27.2 —

Sur ∗ Dor ∗ Bl 7.0 12.4 — 5.6
Sur ∗ Dor ∗ Bl — — — —

Avg. Sur ∗ Dor ∗ Bl 48.7 181.9 43.5 75.7
time Sec ∗ Per ∗ Br 39.5 110.9 74.5 93.1

Sec ∗ Per ∗ Br 59.1 136.4 77.5 238.4
Sec ∗ Per ∗ Br — 99.7 1.3 27.3

Prod Sec ∗ Per ∗ Br — — — —
uct Sec ∗ Per ∗ Br — 14.0 — —

Sec ∗ Per ∗ Br — 1.3 — —
Sec ∗ Per ∗ Br — — — —
Sec ∗ Per ∗ Br 37.3 241.5 55.2 71.4

SD

Sur ∗ Dor ∗ Bl 70.8 476.2 192.0 153.7
Sur ∗ Dor ∗ Bl 36.7 545.3 40.8 83.8
Sur ∗ Dor ∗ Bl 181.4 93.7 7.2 0.0

Proc Sur ∗ Dor ∗ Bl 26.8 142.9 0.0 373.7
ess Sur ∗ Dor ∗ Bl — 0.0 0.0 —

Sur ∗ Dor ∗ Bl 8.5 0.0 — 0.0
Sur ∗ Dor ∗ Bl — — — —
Sur ∗ Dor ∗ Bl 91.6 399.5 126.3 135.6
Sec ∗ Per ∗ Br 58.7 148.2 139.1 75.7
Sec ∗ Per ∗ Br 115.8 193.8 95.4 311.1
Sec ∗ Per ∗ Br — 199.7 0.0 0.0

Prod Sec ∗ Per ∗ Br — — — —
uct Sec ∗ Per ∗ Br — 5.5 — —

Sec ∗ Per ∗ Br — 0.0 — —
Sec ∗ Per ∗ Br — — — —
Sec ∗ Per ∗ Br 80.6 509.2 142.0 134.6

Sur: Surprise, Dor: Dormant, Bl: Blocking, Sec: Security, Per: Performance,
Br: Breakage, Avg. time: Average days to fix a bug

Interestingly, which kind of bugs is fixed faster than others
varies between the projects. For instance, it takes longer
time to fix surprise bugs and dormant bugs in Derby while
bugs relate to blocking (e.g., Sur ∗Dor ∗ Bl, Sur ∗Dor ∗ Bl,
and Sur ∗Dor ∗ Bl) need less time to be fixed than sur-
prise bugs and dormant bugs. In Accumulo, surprise bugs
(Sur ∗Dor ∗ Bl) and dormant bugs (Sur ∗Dor ∗ Bl) are fixed
faster than blocking bugs (Sur ∗Dor ∗ Bl). Currently the size
of our dataset is too small to test the statistical significance, but
it would be worth analyzing the reason why these differences in
fixing high impact bugs occurred. In the near future, we would
like to collect more data from these projects and investigate
more in depth.

3) Product Bugs: From Table II, we can see that the num-
ber of product bugs are smaller than process bugs in whole. We

539538538

Sec*Per*Br

Sec*Per*Br

Sec*Per*Br

������

6�

7� 19�

0�

1

Sec*Per*Br�

Sec*Per*Br�

3�

Sec*Per*Br�

Derby:Product�

Sec*Per*Br�64�

Security
(Sec)

Performance
(Per)�

Breakage
(Br)�

Fig. 3. Relationship among product bugs in Derby

can also see that the time to fix security bugs (Sec ∗ Per ∗ Br)
is shorter than performance bugs (Sec ∗ Per ∗ Br). This is
consistent with the findings in the previous study [15]. In
our dataset, only Derby has the larger number of breakage
bugs (Sec ∗ Per ∗ Br). In the Derby project, discussions about
regression test often observed as follows.

Comment in Bug ID: DERBY-3032 — the test
should be disabled if the user is the operating
system’s super-user account. However, I don’t know
how to detect that condition inside Java. I recom-
mend removing this test from the regression suite. We
can flag it as a test case which we run standalone
from a non-root account when we vet releases. Or
not. I am not terribly worried about removing —

At any hand, we need more data to deeply analyze product
bugs since overlapped relationships among security, perfor-
mance and breakage bugs were rarely observed excepting
Derby.

IV. DISCUSSIONS

A. Overlapped Bugs: just a minority? or really high impact?

In our case study, we observed overlapped bugs such as
Sur ∗Dor ∗ Bl and Sur ∗Dor ∗ Bl though the number of them
are very small, compared with other bugs. In what follows, we
introduce some bug reports which has overlapped relationships
and discuss whether they are really high impact bugs or not.

1) Sur ∗Dor ∗ Bl: This type of bug is regarded as logical
conjunction of surprise bugs and dormant bugs. They were
relatively often observed in all the four projects, compared to
other overlapped bugs. It is no wonder that there are many
[Sur ∗Dor ∗ Bl] bugs because surprise bugs are detected after
a release, which means that there were missing bugs before the
release and the missing bugs also might be missed in several
releases in the past.

2) Sur ∗Dor ∗ Bl: This type of bug is regarded as logi-
cal conjunction of surprise bugs and blocking bugs. Of one
hundred bugs, only one [Sur ∗Dor ∗ Bl] bug was observed in
Derby and Qpid. In Derby, one developer argued to resolve
an issue which was not recognized as an issue among other
developers before.

Comment in Bug ID: DERBY-530 — Currently the
client sends all attributes specified in the the url to
the server in the RDBNAM parameter of the ACC-
SEC command. This includes any client attributes
(which the server ignores). It does not however make
proper consideration for the properties specified in
the info parameter of the connect(String url, Prop-
erties info) method. Another issue with the current
approach is that user and password attributes get
passed to the server without encryption if specified
with the url. —

This bug (Bug ID: DERBY-530) seemed to be a blocker
for other bug (Bug ID: DERBY-559) incidentally.

Comment in Bug ID: DERBY-559 — The sending of
user/password in RDBNAM is fixed by DERBY-530.
getURL still needs to be fixed. —

3) Sur ∗Dor ∗ Bl: This type of bug is regarded as logical
conjunction of dormant bugs and blocking bugs. Although we
found that the following five [Sur ∗Dor ∗ Bl] bugs, we could
not understand the reason why these bugs happened.

∙ https://issues.apache.org/jira/browse/ACCUMULO-1854

∙ https://issues.apache.org/jira/browse/ACCUMULO-806

∙ https://issues.apache.org/jira/browse/ACCUMULO-2540

∙ https://issues.apache.org/jira/browse/DERBY-3997

∙ https://issues.apache.org/jira/browse/THRIFT-1523

These bug reports are tagged as Blocker, but they do not
explicitly link to blocked bugs except in ACCUMULO-1854.
They might be just tagged as Blocker to be fixed quickly
though we need to further investigate them.

4) Sec ∗ Per ∗ Br: This type of bug is regarded as logical
conjunction of security bugs and performance bugs, but was
not observed in our case study.

5) Sec ∗ Per ∗ Br: This type of bug is regarded as logical
conjunction of security bugs and breakage bugs. Three bugs
were observed only in Derby.

∙ https://issues.apache.org/jira/browse/DERBY-2874

∙ https://issues.apache.org/jira/browse/DERBY-3202

∙ https://issues.apache.org/jira/browse/DERBY-5582

Two of these bugs were found in their regression test for
security.

6) Sec ∗ Per ∗ Br: This type of bug is regarded as logical
conjunction of performance bugs and breakage bugs. One bug
was observed only in Derby. This bug (Bug ID: DERBY-5412)
was due to errors during regression test for performance.

From these bugs, we cannot provide any general findings
and bugs introduced above might be incidentally observed in
each project. Although it is also currently difficult to provide
useful corpus to researchers and practitioners for classifying
and/or predicting each type of high impact bugs, we would
like to do so in the future by adding more data (e.g., at least
one thousand bugs for each project).

540539539

B. Limitations

In this study we only used bug report data in four open
source projects. As described above, we need to add more bug
data to provide useful, actionable findings because we only
analyzed one hundred bug reports for each project. The studied
open source projects are relatively large scale, successful
projects, but our findings in this study might not be applicable
to any corporate projects. We need to analyze OSS projects
and corporate projects to verify the generality of our findings.

V. CONCLUSION AND FUTURE WORK

In this paper we conducted a case study on high impact
bugs, which classified bugs reported to four open source
projects into six types of high impact bugs. In the case study,
one hundred bug reports were manually inspected for each
project and are classified into six types of high impact bugs
based on previous studies [10]–[15] which focus on high
impact bugs. Our case study aimed to reveal distributions of
high impact bugs in reported bugs and overlapped relationships
among high impact bugs. In the future, we will add more bug
data to provide useful corpus to make MSR techniques more
actionable.

ACKNOWLEDGMENT

This research is conducted as part of Grant-in-Aid for
Scientific Research (C) 24500041 by Japan Society for the
Promotion of Science (JSPS).

REFERENCES

[1] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (ESEC/FSE
’09), 2009, pp. 111–120.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineer-
ing (ICSE ’06), 2006, pp. 361–370.

[3] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set and cache-based approach for bug triaging,” in Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, ser. ESEC/FSE ’11. ACM, 2011,
pp. 365–375.

[4] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering (ICSE ’10) - Volume 1, 2010, pp. 45–54.

[5] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th international conference on
Software engineering (ICSE ’08), 2008, pp. 461–470.

[6] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in Proceedings of
the 29th international conference on Software Engineering (ICSE ’07),
2007, pp. 499–510.

[7] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, ““not my
bug!” and other reasons for software bug report reassignments,” in
Proceedings of the ACM 2011 conference on Computer supported
cooperative work (CSCW’11), 2011, pp. 395–404.

[8] ——, “Characterizing and predicting which bugs get fixed: an empirical
study of microsoft windows,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE’10) - Volume
1, 2010, pp. 495–504.

[9] E. Shihab, A. Ihara, Y. Kamei, W. Ibrahim, M. Ohira, B. Adams,
A. Hassan, and K. Matsumoto, “Predicting re-opened bugs: A case
study on the eclipse project,” in 17th Working Conference on Reverse
Engineering (WCRE’10), 2010, pp. 249–258.

[10] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan, “High-
impact defects: A study of breakage and surprise defects,” in Proceed-
ings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering (ESEC/FSE ’11),
2011, pp. 300–310.

[11] T.-H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan, “An empirical
study of dormant bugs,” in Proceedings of the 11th Working Conference
on Mining Software Repositories (MSR ’14), 2014, pp. 82–91.

[12] H. Valdivia Garcia and E. Shihab, “Characterizing and predicting
blocking bugs in open source projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories (MSR ’14), 2014,
pp. 72–81.

[13] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports
via text mining: An industrial case study,” in Proceedings of the 7th
Working Conference on Mining Software Repositories (MSR ’10), 2010,
pp. 11–20.

[14] A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing
performance bugs,” in Proceedings of the 10th Working Conference on
Mining Software Repositories (MSR ’13), 2013, pp. 237–246.

[15] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: A case study on firefox,” in Proceedings of the 8th Working
Conference on Mining Software Repositories (MSR ’11), 2011, pp. 93–
102.

[16] I. Molyneaux, The Art of Application Performance Testing : Help for
Programmers and Quality Assurance. O’Reilly Medea, 2009.

[17] R. E. Bryant and D. R. O’Hallaron, Computer Systems : A Program-
mer’s Perspective. Addison-Wesley, 2010.

541540540

