
Early Identification of Future Committers in Open
Source Software Projects

Akinori Ihara∗, Yasutaka Kamei†, Masao Ohira‡, Ahmed E. Hassan§, Naoyasu Ubayashi† and Ken-ichi Matsumoto∗
∗Graduate School of Information Science, Nara Institute of Science and Technology, JAPAN

Email: (akinori-i, matumoto)@is.naist.jp
†Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, JAPAN

Email: kamei@ait.kyushu-u.ac.jp, ubayashi@acm.org
‡Faculty of Systems Engineering, Wakayama University, JAPAN

Email: masao@sys.wakayama-u.ac.jp
§School of Computing, Queen’s University, CANADA

Email: ahmed@cs.queensu.ca

Abstract—There exists two types of developers in Open Source
Software (OSS) projects: 1) Committers who have permission to
commit edited source code to the Version Control System (VCS),
2) Developers who contribute source code but cannot commit to
the VCS directly. In order to develop and evolve high quality OSS,
projects are always in search of new committers. OSS projects
often promote strong developers to become committers. When
existing committers find strong developers, they propose their
promotion to a committer role. Delaying the committer-promotion
might lead to strong developers departing from an OSS project
and the project losing them. However early committer-promotion
comes with its own slew of risks as well (e.g., the promotion of
inexperienced developers). Hence, committer-promotion decisions
are critical for the quality and successful evolution of OSS
projects. In this paper, we examine the committer-promotion
phenomena for two OSS projects (Eclipse and Firefox). We find
that the amount of activities by future committers was higher
than the amount of activities by developers who did not become
committers). We also find that some developers are promoted to
a committer role very rapidly (within a few month) while some of
developers take over one year to become a committer. Finally, we
develop a committer-identification model to assist OSS projects
identifying future committers.

I. INTRODUCTION

In an Open Source Software (OSS) project, some de-
velopers (called “committers”) have permission to commit
edited source code (e.g., patches) to the Version Control
System (VCS) of their project [1]. An OSS project gives such
permission to a very limited number of developers. The small
number of committers ensures that OSS projects can maintain
the high quality of their source code.

However as the popularity of an OSS project grows, the
number of contributed patches increases at a very fast pace.
Such rapid growth of contributed patches makes it difficult
for a relatively few committers to manage them in a timely
fashion [2][3][4][5].

Large-scale successful OSS projects need to increase the
number of committers to successfully evolve [6]. However,
most large-scale OSS projects have more than ten thousand
developers [7]. It is difficult to easily identify a potential
committer (i.e., a developer that has good promise to become

a committer). In general, a developer is promoted to a new
committer through the recommendation of current co mmit-
ters [8]. The committers comprehensively appraise developer’s
activities in extending functions and fixing bugs. However,
potential future committers often leave the project before they
are recommended to a committer role [9][10].

To avoid the loss of capable developers, one needs to
identify future committers as soon as possible. However, the
committers do not know whether a developer recommended
by committers is likely to continue to contribute to the project
for a long time. In this study, to identify future committers,
we analyze developers activities in terms of the number of
contributed patches and the number of contributed comments.
Then we build a committer-identification model using these
metrics. The goal of the model is to predict whether a particular
developer will became a committer during our target period.

Using data from two large OSS projects (Eclipse platform
and Mozilla Firefox), we answer three research questions.

RQ1: Are there any differences in the activities of future
committers and developers?

To understand the developer activities that contribute to
the predictive accuracy of a committer-identification model,
we analyze the differences in the activities of future commit-
ters and developers (i.e., not future committers). If we find
any differences of activities, these metrics would present an
effective measure in identifying future committers.

RQ2: Which developer activities lead to early promotion
to a committer role?

Most committers are promoted to such a role after con-
tributing to the project for around a year. However some
developers are promoted to a committer role considerably
earlier. Hence, we analyze the activities of rapidly-promoted
committers, and the activities of regularly-promoted commit-
ters.

RQ3: How accurate is a committer-identification model
built using developer activities?

We build a committer-identification model using developer
activities (i.e. patch submission, discussion of development,

and activity period), then we evaluate how well the model
predicts future committers.

This paper is laid out as follows. Section 2 introduces
related work motivates our study. Section 3 presents the studied
developer activities. Section 4 provides the design of our exper-
iment, and Section 5 presents the results. Section 6 studies the
activities of developers once they become committer. Finally,
Section 7 concludes the paper and presents our future work.

II. BACKGROUND AND RELATED WORK

A. Support for the activities of committers

Many researchers have proposed approaches to support
committer activities [11][12][13]. A prominent goal of many
of these studies has been to automate some of the committer
activities [14][15][16].

Triagging Bugs: Committers receive a large number of feature
requests and bug reports. Rastkar et al. [16] built a system
to automatically summarize bug reports in order to reduce
the time needed to understand these bug reports. Moreover,
Hooimeijer et al. [17] presented a method to identify the bug
reports that should be fixed first using metrics derived from
developer activities data such as the number of comments.

Assigning bugs: When committers receive requests for fixing
a bug, they should assign the requests to developers who have
the appropriate skills to solve the request. If the assignment
is done incorrectly, valuable resources are wasted [18]. Anvik
et al. [14] and Cubranic et al. [15] presented a approach to
identify the most suitable developer for a bug report based on
textual information such as the title and the description of the
bug report.

Verifying bugs: Committers have to verify patches that devel-
opers created to fix a bug. After that, committers commit the
fixed source code to the VCS of the project. Unfortunately in
some cases, bugs have to be re-opened [19]. Re-opened bugs
increase maintenance costs and lead to unnecessary rework by
busy developers. Shihab et al. [20] presented an approach to
identify whether a bug will be re-opened.

Prior studies aim to provide techniques for the effective
use of the limited human resources of a few committers. On
the other hand, the goal of our study is to increase the human
resources by recommending additional capable committers.

B. Studies of the Committer Promotion Process

Increasing the number of committers in a large OSS
projects is important to cope with the large influx of developer
contributions and requests [1]. In order to identify future com-
mitters from developers, current committers carefully examine
developer activities in search of future committers that can join
the project.

Jensen et al. [8] interviewed committers about the activities
that they track to recommend new committers. In the Apache
project, committers identify new committers based on the
developer’s technical activities such as patch contributions.
The recommended future committers are presented to Apache
PMC (Project Management Committees) members. The PMC
members judge whether or not a proposed committer should

be promoted to a committer role. In the Mozilla project, com-
mitters identify future new committers based on a developer’s
social activities such as discussion of OSS development in
addition to their technical activities.

Zhou and Mockus [21] analyzed how the expertise of
developers increases in software projects. They found that
developers’ productivity in terms of the number of tasks per
month increases with project tenure and plateaus within a few
months in small and medium projects, while taking up to 12
months in large projects. In an extended study, they analyzed
what impacts the chances that a new joiner to a software
project will become an LTC (Long Term Contributor) who
stays with the project for at least three years [22]. As a result,
they found that the main differences among participants were
in their capacity, willingness and opportunity to contribute to
activities (e.g. the number and type of tasks, the fraction of
reported issues) at the time of joining. Moreover Zhou et al. did
target not only committers but also all developers in general.

Bird et al. [9] presented a hazard-rate model to identify the
most active period of developers in the Apache project, Python
project and PostgreSQL project. They found that existing
committers usually recommend developers who have worked
for about a year. In addition, prior history of patch submissions
has a strong effect in Apache and Python projects. However,
Bird et al. have not explored the activities of future committers
before they become committer (or after they become commit-
ters). Moreover, Bird et al. have not examine the difference of
activities between regular and rapidly-promoted committers.

Fujita et al. [23] analyzed the differences in the number
of submitted and reviewed patches, and the patch edit and
review times between future committers and developers. As
a result, they found that future committers contributed tech-
nical contribution (patch submission and review) more than
developers. However, they have not analyzed differences of
social activities (i.e. communication among developers). In
addition, Fujita et al. did not show the change in activities
as developer are promoted to committer roles. Moreover, they
did not explore the various types of committer promotions.

Gharehyazie et al. [24] built statistical predictors for future
developers (like commimtter) in OSS projects based on activi-
ties (the number of patches/messages) early in their tenure with
the project. As a result, developer initiation could be modeled
with as little as one month’s work of information about the
social activity of individuals. When Gharehyazie et al. used
the information for three months since an individual started,
the model produced more stable result. Moreover, in order to
identify high potential future committers, they did not focus on
the differences of their promotion process and their activities
after being a committer.

III. DEVELOPERS ACTIVITY

Our studied OSS projects (Eclipse and Mozilla) provide
guidelines for committer promotions1. According to the guide-
lines, when the project acknowledges the contribution of a
developer, he or she will be promoted to a committer role.

1Eclipse: http://wiki.eclipse.org/Development Resources/HOWTO/Nomina
ting and Electing a New Committer

Mozilla: http://www.mozilla.org/hacking/committer/

!"#$%&'(#
)*+,*-!

.*)/,01#!01&)02##
34/&*5#6.!37!

!01&),89&*#:%&'(!

!055,&&*)!

!055,&!;/<#)*=50>,?,'%&,01!

@**>8%'<!

A*+*20:*)!

B"#A,/'9//,01!

;"#$%&'(#
')*%&,01!

!01&),89&*#'055*1&!

@**>8%'<!

!01&),89&*#'055*1&!

Fig. 1: Process for applying patches in a project.

However, the guidelines do not define the specific activities or
the amount of activity to be used to appraise the developer’s
contribution. In this study, we compare the activities of the
future committers with the activities of developers who did
not become a committer during our study period. Figure 1
shows a simplified process for patch development.

A: Patch creation: Developers create patches to extend func-
tionality and to fix bugs. Then, they contribute patches to a Bug
Tracking System (BTS). In this study, we regard the developer
who contributed a patch as the developer who created the
patch.

B: Discussion: Developers discuss the creation of patches
and review each other’s patches. They discuss their plans and
designs.

C: Patch verification: Committers verify the contributed
patches. If they judge that a patch should be edited again,
they would ask the developers to re-edit the source code. On
the other hand, if they judge that a patch does not need to be
edited again, the committers would commit the patch to the
Version Control System (VCS) on behalf of the developers.

Only committers can verify patches (C). We analyze the
developer activities (A: Patch creation and B: Discussion) and
the time period which committers use to appraise the activities
of a future committer. We then build a committer-identification
model using these activities.

IV. EXPERIMENT SETTING

To understand the developer activities that existing com-
mitters appraise when identifying future committers, we an-
alyze the activities of future committers before they become
committers.

A. Target Data

Our study uses data from the Eclipse and Mozilla projects.
Table I presents the studied period, and the number of devel-
opers in each project.

Some developers are already committers. For example,
some IBM company developers have been committers since
they joined the Eclipse project. Existing committer are ones
who have committed source code to VCS before the studied
period (Figure 2. On the other hand, we describe a developer
as a future committer, he or she commits patches for the first

TABLE I: Summary of the studied data.

Eclipse project Mozilla project
subproject platform Firefox
target period 2001/10-2010/12 2004/01-2008/12
existing committers 36 96
developers 8,964 12,287
future committers 53 51
studied developers 9,017 12,338(developers + future committers)

!"#$%!&'%#()*!

*%+&,&-%.(/!(0$&1)22(!!%#3!

1)22(!&1)*%/&!)&456!1)0!#(78!%&'"!19%/:1)22%0!/&!)&;<6!

*%+&;&-=8!8#%&1)22(!!%#3!

%+&4&-%+%>)'%#3!

Fig. 2: An example of classifying developers.

time during the studied period. We also describe someone as a
“developer” if he or she has never committed anything to VCS
since the project’s start and throughout the studied period. We
found 36 existing committers, 53 future committers and 8,964
developers in the Eclipse platform project. We focus on only
9,017 (= 53 + 8,964) developers. We do not consider the 36
existing committers, since the goal of this study is to develop
a method for identify future committers.

B. Extracting Metrics

In this study, we extracted metrics from the Bugzilla2 data
as BTS about (a) Patch creation and (b) Discussion shown in
Figure 1, and extracted the committer list from VCS 3. Figure
3 shows the procedure used to extract metrics using the BTS
and VCS data.

(1) Extracting developer activities from BTS data

Many OSS projects use a BTS to manage submitted
enhancement requests and bug reports. BTS reporters write
down the target module name, attach edited patches, and
submit comments in the reports. In our study, we collected
the reports from BTS, then extracted who contributed the
patches/comments, when developers/users contributed them.
This automated extraction method is similar to prior stud-
ies [23][25][26].

We also measure the activity period of each developer. The
activity period is from the month when a developer started
their first activity (patch or comment contribution) in a project
to the month when they performed their final activity during
our studied period. We summarize their activity history in
developers activities reports for each developer ((a) in Figure
3).

2Eclipse Bugzilla: https://bugs.eclipse.org/bugs/
Mozilla Bugzilla: https://bugzilla.mozilla.org/

3Eclipse and Mozilla VCS were provided by the MSR Challenge conference
(http://2011.msrconf.org/)

!"#$%!&'''&(
"!)*+,(+-./01)2/-(
34#4(50/6",78(930*+/-#

%+*,"**+/-(+-./01)2/-((

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$#

,/113-7&:(;<+,3((='&'>'?>'&(

@3<</4,(((!/A((='&'>'?>'B(

5)7,@(+-./01)2/-((

,/113-7C:(;<+,3((='&'>'?>&'(
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$#

930*+/-(D/-70/<(
EF*731#

%
#

"G3H(I(J(;<+,3(((J(='&'>'?>'I(J(K&'L=I(

(M+N36(./0(O&'''&(

(G3H(=(J(D)0/<(J(='&'>'P>&&(J(K&B((

(QR6)73(7@3(*@/S(H+3S(,/11)-6(T(

$D<)**+U,)2/-(/.((63H3</R30*(+-7/(

,)-6+6)73(,/11+V30*()-6(#3-30)<(

63H3</R30*(

$D/11+V30(),2H+7F(+*(3N70),736(

A3./03(7@3F((A3,)13()(,/11+V30(

!"#(W0),X+-#(
EF*731#

D/11+7(</##

Y)Z(%3H3</R30(),2H+23*(03R/07*#

,/11+V30#
50/1/2/-(6)73(./0(

A3+-#(,/11+V30#

;<+,3# ='&'>'I>'I#

D)0/<# =''[>&'>&B#

%)H+6# =''C>'P>=&#

!
!
!#

!
!
!#

YAZ(D/11+V30*(<+*7#

!"#(03R/07*#

$5)7,@(,/-70+A"2/-(6)73:&""(

(((='&'>'&>=[8(='&'>'=>'P8(T(

\)13!;<+,3(

$D/113-7(,/-70+A"2/-(

6)73:((
&"=''C>'[>=&8(=''C>&'>&'8(T(

$;,2H3(R30+/6!(

&"M/0(&'(1/-7@*(

$5)7,@(,/-70+A"2/-(6)73:((
&='&'>'&>=[8(='&'>'=>'P8(T(

\)13!;<+,3(

$D/113-7(,/-70+A"2/-(

6)73:((
&=''C>'[>=&8(=''C>&'>&'8(T(

$;,2H3(R30+/6!(

&"M/0(B(1/-7@*(

Y,Z(M"7"03(,/11+V30(((

),2H+23*(03R/07*(

$5)7,@(,/-70+A"2/-(6)73:((
&='&'>']>'P8(='&'>']>=[8(T(

\)13!!/A(

$D/113-7(,/-70+A"2/-(

6)73:((
&(='&'>'&>&=8(='&'>'&>&]8(T(

$;,2H3(R30+/6!(

&"M/0(](1/-7@*(

Y6Z(%3H3</R30(),2H+23*(

03R/07*(

Y(&(Z#

Y(=(Z#

Y(I(Z#

Fig. 3: Method to extract developer activities.

(2) Extracting the promotion date for becoming a committer
from VCS data

We collect the commit log from VCS, then we summa-
rize the committer name and the date when each committer
committed their first patch to VCS. We record each committer
and the date of their first patch (i.e., the date they became a
committer) in a Committers list ((b) in Figure 3).

(3) Classifying the developer activities reports

Using the committer list, we can classify developer activ-
ities reports into either future committer activities reports or
developer activities reports ((c) and (d) in Figure 3). The future
committer activities tracks activities of a developer until the
developer is promoted to a committer.

V. EXPERIMENTAL RESULTS

The goal of our experiment is to understand the committer
activities and the accuracy of our committer-identification
model. We now present the results of our study with respect
to our three research questions.

RQ1: Are there any differences in the activities of future
committers and developers?

Motivation. As shown in Figure 1, OSS developers iterate
patch creation and discussion during development to enhance
functionalities and to fix bugs. After that, committers verify
contributed patches and commit the patches to VCS. Commit-
ters recommend a high potential developer as a new committer
(i.e., future committer). Then existing committers appraise the
developer’s past activities (patch and discussion contributions).
There may be differences in the amount of activities between
a future committer and a developer. If we can find such
differences, we can easily identify future committers from
the thousands of developers in an OSS project. For RQ1, we
compare the amount of activities of future committers and
developers to develop an effective mean to identify future
committers.

Approach. We present two steps in this approach. These steps
are (1) Extracting future committer activities and developer
activities, and (2) Testing the differences in the activities of
future committers and the activities of developers.

(1) Extracting future committers activities and developers
activities

Existing committers appraise a developer’s past activities
(patch and discussion contributions) to find future committers.
In this study, we measure the number of patch files/comments
that developer contributed to Bugzilla. The activity period of a
future committer is up till he or she commits patches to VCS
for the first time. The activity period of a developer is all his
activities during our studied period.

(2) Testing the differences between the activities of future
committers and the activities of developers

We conducted a Wilcoxon signed-rank test. A non-
parametric tests which does not assume a normal distribution
as is the case in our data set. We used a significance level of
5%.

Results. Figure 4 and 5 present the differences in the amount
of activities between future committers and developers. Figure
4 shows the distribution of the number of contributed patches
in the Eclipse platform and Mozilla Firefox projects by future
committers and by developers. Figure 5 shows the distribution
of the number of contributed comments by future committers
and by developers. The p-value of the Wilcoxon signed-rank
test are noted at the top of each sub-figure.

The amount of activities of future committers is higher than
that of developers. In the Eclipse project, the median number
of contributed patches by future committers and by developers
is 15 and 0 respectively. In the Mozilla Firefox project, the
median number of contributed patches by future committers
and by developers is 1 and 0 respectively. In both projects,
we find a significant difference in the number of contributed
patches by future committers and by developers. Hence, most

��� � � � � � 	 	 �
 �
 �

0
50

10
0

15
0

0
10

20
30

40
50

 � � � � � �� � �

�
��

��
�

��
�

� � � � � � � � � � � � � � � � �� � � � � �� � � � �� � � �� � � � � � � � �� � � � � �
��� � � � � � 	 	 �
 �
 �

���
��	

�
���

��
��
���

��
��

��
��

��
��

�

���
��	

�
���

��
��
���

��

� � � � � � �
� � � � � � � � � �

 � � � � � �� � �� � � � � � �
� � � � � � � � � �

Fig. 4: Differences of the number of patches between commit-
ters and developers

0
50

10
0

15
0

20
0

��� � � � � � 	 	 �
 �
 �

0
50

10
0

15
0

20
0

25
0

30
0

��� � � � � � 	 	 �
 �
 �

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

 � � � � � � � � � � � � � � � �� � � � � �� � � � �� � � �� � � � � � � � �� � � � � �

��
�	

�

�
�

�	�
�	�
��

�
�

��

��
�	

�

�
�

�	�
�	�
��

�
�

��

� � � � � � �� � �� � � � � � �
� � � � � � � � � �

� � � � � � �� � �� � � � � � �
� � � � � � � � � �

Fig. 5: Differences of the number of comments between future
committers and developers

developers have never contributed patches. Also, in the Eclipse
platform project, the median number of contributed comments
by future committers and by developers is 50 and 2 respec-
tively. In the Mozilla Firefox project, the median number of
contributed comments by future committers and by developers
are 12 and 2 respectively. In both projects, we also find a
significant difference in the number of contributed comments
by future committers and those by developers. Most developers
also did not contribute social activities. Hence both metrics
(the number of contributed patches/comments) are useful in
identifying future committers.� �

RQ1: The amount of activities by future committers is
higher than the amount of activities by developers. These
metrics (the number of submitted patches/comments) are
useful in identifying future committers.� �

RQ2: Which developer activities lead to early promotion to
a committer role?

Motivation. Committers usually consider a developer for a
committer role once the developer has worked for about a
year [9]. However, some developers who have worked for less
than a year have become committers. We compared the number

! "! #! $! %! &!!

!
"
!

#
!

$
!

%
!

&
!
!

'()*

*
)
+,
)
-
(.
/
)

! "! #! $! %! &! '!

!
#
!

%
!

'
!

(
!

"
!
!

)*+,

,
+
-.
+
/
*0
1
+

!"#$%&'(%#)*+,-(%,+.'"/! 0+1$##)(2$,'3+4(%,+.'"/!

)"56$/7(%',$+8(9-+:/;<!)"56$/7(%',$+8(9-+:/;<!

=
(:
>
-
?
'
,(
+
3(
"+
-
-
$@
'
,&
!

=
(:
>
-
?
'
,(
+
3(
"+
-
-
$@
'
,&
!

Fig. 6: Activity period until becoming a committer.

! "

#
!
#

"
#

$
#

%
#

&
#

! "

#
"
#

%
#

'
#

(
#

!
#
#

!"#$%&'()(*+,-(!"#$%&'()(*+*.
/012%%$(324'506(!407'89:8%2!;'(!%$9504<(!407'89

=&28>%?"
!40<09'@(

80<<299'4;

%0AB"9'4<(
'6!'42'A8'@(
80<<299'4;

!
"

"
#

"
$

"
%

"
&

"
"

'
"

%
"

(
"

&
"

!
"

"

)*
+
,-

.
/

0
+
1,

2
3,

4
5
)6

*
+
7

)*
+
,-

.
/

0
+
1,

2
3,

4
5
)6

*
+
7

=&28>%?"
!40<09'@(

80<<299'4;

%0AB"9'4<(
'6!'42'A8'@(
80<<299'4;

!"#$%&'(
#!)*)+,%-
.)**$/,!0!

!,12&"!&'(
#!)*)+,%-
.)**$/,!0!

!"#$%&'(
#!)*)+,%-
.)**$/,!0!

!,12&"!&'(
#!)*)+,%-
.)**$/,!0!

Fig. 7: Differences of the number of patches of regularly-
promoted committers and rapidly-promoted committers

of committers who has contributed for more than one year or
less.

Figure 6 shows the pareto chart of the activity period
before becoming a committer in studied projects (the Eclipse
platform and Mozilla Firefox projects). In Eclipse project,
we found 25 regularly-promoted committers and 28 rapidly-
promoted committers who have worked for more than (less
than) a year. Similarly, in Mozilla Firefox project, we found 29
regular experienced committers and the 22 rapidly-promoted
committers.

For RQ2, we analyze the activity patterns of regularly-
promoted committers and those of rapidly-promoted commit-
ters. We break up RQ2 into two sub-research questions.

RQ2-1: Is there a difference in activities of rapidly-promoted
committers and the activities of regularly-promoted commit-
ters?

Approach. We compare the rapidly-promoted committer ac-
tivities to the regularly-promoted committer activities. The
rapidly-promoted committer activities is the amount of activ-
ities (patch and discussion contributions) performed by the
rapidly-promoted committers. The regularly-promoted com-
mitter activities is the amount of activities performed by
the regularly-promoted committers. We conducted a Wilcoxon
signed-rank test on their activities.

Results. Figure 7 and 8 show the Pareto chart distribution of

! "

#
$
#

!
#
#

!
$
#

"
#
#

"
$
#

%
#
#

#
"
#

&
#

'
#

(
#

!
#
#

!"#$%&'()(*+,-(!"#$%&'(..(*+*/
0123%%$(435'617(!518'9:;9%3!<'(!%$:615=(!518'9:

!
"

"
#

"
"

!
#

"
$

"
"

%
"

"
$

#
"

&
"

$
"

"
'

"
(

"
!

"
"

)*
+

,-
.

/
0

+
1,

2
3,

4
2

/
/

+
-

)5

)*
+

,-
.

/
0

+
1,

2
3,

4
2

/
/

+
-

)5

>&39?%@"
!51=1:'A(

91==3::'5<

%1BC":'5=(
'7!'53'B9'A(
91==3::'5<

>&39?%@"
!51=1:'A(

91==3::'5<

%1BC":'5=(
'7!'53'B9'A(
91==3::'5<

!"#$%&'(
#!)*)+,%-
.)**$/,!0!

!,12&"!&'(
#!)*)+,%-
.)**$/,!0!

!"#$%&'(
#!)*)+,%-
.)**$/,!0!

!,12&"!&'(
#!)*)+,%-
.)**$/,!0!

Fig. 8: Differences of the number of comments of regularly-
promoted committers and rapidly-promoted committers

the activities (the number of contributed patches/comments)
of regular and rapidly-promoted committer. The p-value of
the Wilcoxon signed-rank test are noted at the top of the sub
figures.

First, we compare the number of contributed patches.
In the Eclipse project, the median number of contributed
patches by regularly-promoted committers is 0 and by rapidly-
promoted committers is 15. In the Mozilla Firefox project, the
median number of contributed patches by regularly-promoted
committers is 0 and by rapidly-promoted committers is 2.
In summary, the median number of contributed patches by
regularly-promoted committers is less than the number of
contributed patches by the rapidly-promoted committers.

Next, we compare the number of contributed comments. In
the Eclipse platform project, the median number of contributed
comments by regularly-promoted committers is 9 and by
rapidly-promoted committers is 41. In the Mozilla Firefox
project, the median number of contributed comments by
regularly-promoted committers is 1 and by rapidly-promoted
committers is 11. Hence, that the median number of con-
tributed comments by regularly-promoted committers is less
than the number of contributed comments by the rapidly-
promoted committers.

However, we could not find a significant difference in
the number of activities between the regularly-promoted com-
mitters and the rapidly-promoted committers in the Mozilla
Firefox project.

Figure 9 shows the activity change of rapidly-promoted
committers. We analyze a period after these future committers
have started working in the projects. The figure shows that
Dev 1 and 2 are promoted to committers after only 6 months
from starting to contribute to the project. As a result of these
activities, the rapidly-promoted committers posted at least over
10 times comments or patches in a month in their early days
as committers.� �

RQ2-1: The number of activities performed by rapidly-
promoted committers is more than regularly-promoted
committers.� �

1 2 3 4 5 6

0
10

25

Index

1 2 3 4 5 6

0
10

25

Index

��������	
���
��������
��

�

� � � � � �
��	�	�� �
��	�� �� ��� �� �

���������	�
��������

1 2 3 4 5 6

0
5

10

Index

1 2 3 4 5 6

0
5

10

Index

���� �� �� 	���� 	�����

�
��

� � � � � �
��	�	�� �
��	�� �� ��� �� �

���������	�
���
������

Fig. 9: Activity change of rapidly-promoted committers.

2 4 6 8 10 12 14

0
20

40

Index
aa

a$
pa

tc
h

2 4 6 8 10 12 14

0
20

40

Index
aa

a$
co

m
m

en
t ��������	
���
������

� � � � � � � � � �

����� � ���� �� �

0 5 10 15 20 25 30

0
20

60

Index

aa
a$

pa
tc

h

0 5 10 15 20 25 30

0
20

60

Index

aa
a$

co
m

m
en

t ���� ����	
��
������

� � � � � �� �� � �

��	�	�� �
��	�� �� ��� �� �

5 10 15

0
5

10
20

Index

aa
a$

pa
tc

h

5 10 15

0
5

10
20

Index

aa
a$

co
m

m
en

t ���� �� �� 	�� � 	���� ����� � ���� �� �

� � � � �

��	�	�� �
��	�� �� ��� �� �

��	�	�� �
��	�� �� ��� �� �

0 5 10 15 20 25 30

0
5

10
20

Index

aa
a$

pa
tc

h

0 5 10 15 20 25 30

0
5

10
20

Index

aa
a$

co
m

m
en

t

���! �� �� 	�� � 	���� ����� " ���� �� �

��	�	�� �
��	�� �� ��� �� �
� � � � � �� �� � �

���������	�
�������� ���������	�
���
������

����� � ���� �� �
�
��
��

�
��
��

�

�
��
��

�
��
��

�

Fig. 10: Activity change of regularly-promoted committers.

RQ2-2: What do regularly-promoted committers do more than
the rapidly-promoted committers?

Approach. For RQ2-2, we qualitatively analyzed the change
activities (the number of contributed patches/comments) in
each month until a regularly-promoted committer becomes a
committer.

Results. Figure 10 shows the activity changes of regularly-
promoted committers in each project. Looking at these figures,
we see a difference between the rapidly-promoted committers
and the regularly-promoted committers. The amount of ac-
tivities by regularly-promoted committers (such as Dev3, 4,
5 and 6 in Figure 10) is fewer than the rapidly-promoted

TABLE II: Developer activities.

activities metrics detail

Patch creation SumNumPatch Sum of the patches that a developer submitted to BTS.
MedNumPatch Median of the patches that a developer submitted to BTS.

Discussion SumNumComment Sum of the comments that a developer submitted to BTS.
MedNumComment Median of the patches that a developer submitted to BTS.

Activity Period ActPeriod Period that a developer has worked in the OSS project.

committers (such as Dev1,2 in Figure 9) at the beginning
of their time. However, the regularly-promoted committers
gradually increase the amount of their activities, and they
became committers after they have worked actively for 1-1.5
years. Few developers continue actively work for about a year.
Most developers who have actively worked for about 1-1.5
years are promoted to committer role.

It is interesting to note that if one examines the few
months before committer-promotion, we find that the amount
of activity of rapidly-promoted committers is similar to the
amount of activity of regularly-promoted committers. Hence
it appears that the amount of activity plays a much bigger
role than simply the amount of time spent as a developer –
this observation might help explain the commonly-discussed in
literature one-year holding period before promotion (e.g., [9])
– It is most likely that developers take one year to ramp up
their contribution levels. However, if a developer is able to
ramp up their contribution faster than there is a good chance
that the developer will be promoted to a committer role much
faster (as is the case in over 40% of the promoted committers
in both projects).� �

RQ2-2: The amount of contribution in the time period just
pre-promotion plays a big in the committer promotion.� �

RQ3: How accurate is a committer-identification model built
using developer activities?

Motivation. Current committers have to find capable OSS
developers from the thousands of developers in an OSS project
in order to promote these capable developer to committer roles.
Current OSS committers would be benefit from a prediction
model that can automatically identify capable developers that
are likely to become committers.

Approach. We build a committer-identification model using
the developer activities (patch and discussion contributions)
and the activity period. From RQ2-1, we found that the rapidly-
promoted committers contributed many patches and comments
in a short time. From RQ2-2, we find that most developers who
have actively worked on a project for 1-1.5 years are likely to
become a committer.

In this study, we use the sum of the activity and the median
of the activity to build the model. Table II shows the developer
activity metrics that are used to build the model.

Our model uses the random forest algorithm to identify
future committers [27]. The objective variable is whether or not
a developer became a committer during our studied period (i.e.,
a future committer or not). The model identifies a developer

as a future committer when the output (continuous value: 0-1)
of the model is over a threshold (0.2, 0.5, 0.8).

We randomly divide our committer dataset (Fig.3 (c)) and
developer dataset (Fig.3 (d)) into two sets: one for training
and the other for testing. However, the number of developers
is much more than the number of committers (9,017:53 for
Eclipse and 12338:51 for Mozilla). With over 240:1 imbalance,
special attention is needed for the model building and for the
model evaluation [28][29]. In particular, we need to rebalance
the training data (we do not modify the testing data) – we
sampled the same number of developers as committers to
build the model. We also rebuild the model 100 times and use
the median of the 100 evaluation results as the experimental
result. Given the high imbalance characteristics of our dataset,
it is recommended to examine the AUC (Area Under the
Curve) of ROC (Receiver Operating Characteristic) instead of
the classically-used precision, recall and F1 metrics in most
software engineering studies [28][30][31]. Nevertheless we do
show all evaluation metrics not only the AUC metric.

Precision measures the ratio of the number of developers
who actually became committers to the number of predicted
committers. Recall measures the ratio of the number of de-
velopers who became actual committers to the number of
predicted developers who never became committers. F1-value
is a combined value of recall and precision as follows.

F1−measure =
2 × Recall × Precision

Recall + Precision

These criteria (e.g., precision and recall) depend on the
particular threshold used for the classification. We additionally
use the AUC of ROC. The ROC measures the ratio of the
number of developers who became committers to the number
of the developers who never became committers. We evaluate
AUC in terms of the number of developers who never became
committers. The AUC metric ranges from 0 to 1. An AUC of
0.5 indicates that a model is equivalent to random guessing.

Results. Table III and table IV show the evaluation results.
These table show that a very strong AUC of the model using
all activities. The AUC is 0.94 and 0.95 for Eclipse platform
and for Mozilla Firefox project. We find that the model had
higher accuracy than the random predictor since the AUC is
considerably higher than 0.5 in both projects. We also find that
precision and recall using all metrics are about 18% and 58%
in the Eclipse platform project (at 0.80 threshold), and about
8% and 44% in Mozilla Firefox project (at 0.8 threshold as
well).

Next, we examine the factors which influence the random
forest predictor the most (this is done by examining the
variable importance measure that is computed by the random

TABLE III: Committer prediction results in Eclipse platform
project.

Threshold Precision Recall F1-value AUC
patch 0.20 0.02 0.96 0.04 0.94
+comment 0.50 0.05 0.77 0.09 0.94
+period 0.80 0.18 0.58 0.28 0.94

0.20 0.01 1.00 0.01 0.81
patch 0.50 0.09 0.65 0.15 0.81

0.80 0.14 0.54 0.22 0.82
0.20 0.02 0.85 0.04 0.88

comment 0.50 0.04 0.73 0.08 0.89
0.80 0.07 0.54 0.12 0.88

TABLE IV: Committer prediction results in Mozilla Firefox
project.

Threshold Precision Recall F1-value AUC
patch 0.20 0.01 1.00 0.02 0.95
+comment 0.50 0.02 0.96 0.04 0.95
+period 0.80 0.08 0.44 0.13 0.94

0.20 0.00 1.00 0.01 0.76
patch 0.50 0.06 0.56 0.11 0.76

0.80 0.06 0.56 0.11 0.76
0.20 0.00 0.92 0.01 0.76

comment 0.50 0.01 0.72 0.03 0.76
0.80 0.05 0.44 0.09 0.76

TABLE V: Variable importance measure.

Eclipse project Mozilla project
SumNumPatch 1.93 1.08
MedNumPatch 1.43 0.78
SumNumComment 3.76 1.38
MedNumComment 1.55 0.76
ActPeriod 2.29 3.47

forest). Table V shows the median value of each variable. From
this table, we find that SumNumComment and ActPeriod are
the most important factors in identifying future committers
in both projects. This observation confirms prior findings by
Bird et al. [9] about the importance of the length of developer
involvement. However, we also find that social contributions
(i.e., comment contributions) not just technical contributions
(i.e., patch contributions) play a role in the promotion decision
– the role of social contributions (3.76/1.38) is even larger than
technical contributions (1.93/1.08) in both projects. Moreover,
the role of social contributions (3.76) is strong even relative
to activity period (2.29) in the Eclipse project.� �

RQ3: Our committer-identification model considerably
outperforms a random predictor.� �

VI. DISCUSSION

A. Activities after becoming a Committer

We have not confirmed whether or not future committers
actively work after they become committers. Existing commit-
ters should recommend developers who will actively work after
they become committers. To help address this, we analyzed the
future committer activities after the future committer became
a committer. In addition, we compared the regularly-promoted

committer activities to the rapidly-promoted committer ac-
tivities. The regularly-promoted committers may lose their
motivation because they have already worked as developers
for more than a year. Therefore, we analyzed what happens
for new committers who have worked only for a short period
of time before being promoted.

On the Eclipse platform project, we find that there are
40 committers of 53 total who have worked for more than
a year after the future committer became a committer. On the
Mozilla Firefox project, we found that there are 30 committers
of 51 total who have worked for more than a year after the
promotion.

Next, we analyzed the rapidly-promoted committer activi-
ties and the regularly-promoted committer activities after they
became committers. Figure ?? and ?? show their activities.
The result shows that the median number of comments and
the median number of commits to VCS by the rapidly-
promoted committers are higher than those by the regularly-
promoted committers. We found significant differences in the
distribution of the number of commits between the rapidly-
promoted committers and the regularly-promoted committers
(The significance level is 10%.).

Our results highlight the importance of early identification
of strong developers and their rapid promotion to committer
roles. In fact, rapidly-promoted committers actively contribute
more than regularly-promoted committers.

B. Threats to Validity

We defined the date when a developer commits to VCS for
the first time as the date of promotion to committer. However,
in some rare cases a developer may get permission to commit
patches before the date of promotion to committer.

We focused on developer activities in the patch contribution
and integration process. There exists many other types of
activities (such as the number of edited lines of code, the
source code quality, and the content of comments) that could
be studied in future work.

The number of the edited source code lines: Weißgerber et
al. [26] show that the size of contributed patches is usually
less than 10 lines. In our data, the number of contributed lines
has a high correlation with the number of contributed patches.
Therefore, we did not use the number of edited source code
lines.

The source codes quality: Committers accept many con-
tributed patches submitted by some developers. On the other
hand, committers may reject many patches submitted by an-
other developer. The acceptance or rejection rate could be an
important metric to improve our model. However, it is difficult
to know whether or not contributed patches were accepted,
because linking the contributed patches to the committed
source codes in VCS is not straightforward [32]. Currently,
many researchers are trying to resolve this problem [33][34].
Future work should attempt to integrate such knowledge into
committer-identification model.

The content of comments: Some developers contribute good
comments to BTS. It might be wise to promote such developers
to committers. However, measuring the quality of a contributed

comment is very subjective, context-sensitive and not straight-
forward

In this paper, we targeted two large OSS projects, the
Eclipse platform and Mozilla Firefox projects, according to the
three conditions. (1) We can compare the results in each OSS
project. We targeted OSS projects using Bugzilla as BTS for
the condition. (2) The OSS projects are active and regularly
release new versions. (3) There is enough data such as the
number of commits and number of bug reports to preserve
generality. We need to analyze other OSS projects to generalize
our findings.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we analyzed developer activities to identify
future committers that should be promoted as committers in
OSS projects. We built a committer-identification model to
identify future committers among the thousands of developers
in an OSS project. Using data from the Eclipse platform and
Mozilla Firefox projects, we find:

RQ1 The amount of activity by a future committer is
higher than the activity of a developer (i.e., not future
committer).

RQ2 regularly-promoted committers have actively worked
for 1-1.5 years before they become committers.

RQ3 Our committer-identification model outperforms a ran-
dom predictor.

Furthermore, we found that after the promotion, rapidly-
promoted committers were more active regularly-promoted
committers.

In the future, we would like to enhance the committer-
identification model by integration new metrics which capture
other types of developer activities.

ACKNOWLEDGMENT

This work has been conducted as a part of ”The Research
Initiative on Advanced Software Engineering in 2013” sup-
ported by Software Reliability Enhancement Center (SEC),
Information Technology Promotion Agency Japan (IPA). Also,
part of this research was conducted under the Japan Society for
the Promotion of Science, Grant-in-Aid for Young Scientists
(B: 25730045), and Scientific Research (C: 24500041).

REFERENCES

[1] K. Fogel, Producing open source software: how to run sucessful free
software project. Sebastopol, CA: O’Reilly Media, 2005.

[2] G. Canfora and L. Cerulo, “Supporting change request assignment in
open source development,” in Proceedings of the 21st Symposium on
Applied Computing (SAC’06), 2006, pp. 1767–1772.

[3] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
bug reports considered harmful... really?” in Proceedings of the 24th
International Conference on Software Maintenance (ICSM’08), 2008,
pp. 337–345.

[4] A. Ihara, M. Ohira, and K. Matsumoto, “An analysis method for improv-
ing a bug modification process in open source software development,”
in Proceedings of the Joint International and Annual ERCIM Workshops
on Principles of Software Evolution and Software Evolution Workshops
(IWPSE-Evol’09), 2009, pp. 135–144.

[5] M. Nurolahzade, S. M. Nasehi, S. H. Khandkar, and S. Rawal, “The
role of patch review in software evolution: an analysis of the mozilla
firefox,” in Proceedings of the Joint International and Annual ERCIM
Workshops on Principles of Software Evolution and Software Evolution
Workshops (IWPSE-Evol’09), 2009, pp. 9–18.

[6] B. Shibuya and T. Tamai, “Understanding the process of participating
in open source communities,” in Proceedings of the ICSE Workshop
on Emerging Trends in Free/Libre/Open Source Software Research and
Development (FLOSS’09), 2009, pp. 1–6.

[7] V. S. Sinha, S. Mani, and S. Sinha, “Entering the circle of trust: Devel-
oper initiation as committers in open-source projects,” in Proceedings of
the 8th Working Conference on Mining Software Repositories (MSR’11),
2011, pp. 133–142.

[8] C. Jensen and W. Scacchi, “Role migration and advancement processes
in OSSD projects: a comparative case study,” in Proceedings of the 29th
International Conference on Software Engineering (ICSE’07), 2007, pp.
364–374.

[9] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu, “Open
borders? immigration in open source projects,” in Proceedings of the
4th International Workshop on Mining Software Repositories (MSR’07),
2007, pp. 6–13.

[10] K. Yamashita, S. McIntosh, Y. Kamei, and N. Ubayashi, “Magnet or
sticky? an oss project-by-project typology,” in Proceedings of the 11th
Working Conference on Mining Software Repositories (MSR’14), 2014,
pp. 344–347.

[11] C. R. de Souza, S. Quirk, E. Trainer, and D. F. Redmiles, “Supporting
collaborative software development through the visualization of socio-
technical dependencies,” in Proceedings of the International Conference
on Supporting Group Work (GROUP’07), 2007, pp. 147–156.

[12] M. Lanza and M. Pinzger, ““A bug’s life”: visualizing a bug database,”
in Proceedings of the 4th International Workshop on Visualizing Soft-
ware for Analysis and Understanding (VISSOFT’07), 2007, pp. 113–
120.

[13] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract: In-
teractive visual exploration of socio-technical relationships in software
development,” in Proceedings of the 31st International Conference on
Software Engineering (ICSE’09), 2009, pp. 23–33.

[14] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”
in Proceedings of the 28th International Conference on Software
Engineering (ICSE’06), 2006, pp. 361–370.

[15] D. Cubranic and G. C. Murphy, “Automatic bug triage using text
categorization,” in Proceedings of the 16th International Conference on
Software Engineering and Knowledge Engineering (SEKE’04), 2004,
pp. 92–97.

[16] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software
artifacts: a case study of bug reports,” in Proceedings of the 32nd
International Conference on Software Engineering (ICSE’10), 2010, pp.
505–514.

[17] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in Pro-
ceedings of the 22nd International Conference on Automated Software
Engineering (ASE’07), 2007, pp. 34–43.

[18] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proceedings of the ESEC/FSE’09, 2009, pp.
111–120.

[19] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Charac-
terizing and predicting which bugs get reopened,” in Proceedings of
the 34th International Conference on Software Engineering (ICSE’12),
2012, pp. 1074–1083.

[20] E. Shihab, A. Ihara, Y. Kame, W. M. Ibrahim, O. Ohira, Masao,
B. Adams, A. E. Hassan, and K. Matsumoto, “Studying re-opened bugs
in open source software,” in Empirical Software Engineering, 2012, pp.
1–38.

[21] M. Zhou and A. Mockus, “Developer fluency: achieving true mastery in
software projects,” in Proceedings of the 18th International Symposium
on Foundations of Software Engineering (FSE’10), 2010, pp. 137–146.

[22] ——, “What make long term contributors: Willingness and opportunity
in oss community,” in Proceedings of the 34th International Conference
on Software Engineering (ICSE’12), 2012, pp. 518–528.

[23] S. Fujita, A. Ihara, M. Ohira, and K. Matsumoto, “An analysis of
committers toward improving the patch review process in OSS de-

velopment,” in Supplementary Proceedings of the 21st International
Symposium on Software Reliability Engineering (ISSRE’10), 2010, pp.
369–374.

[24] M. Gharehyazie, D. Posnett, and V. Filkov, “Social activities rival
patch submission for prediction of developer initiation in oss projects,”
in In Proceedings of the 29th International Conference on Software
Maintenance (ICSM’13), 2013, pp. 340–349.

[25] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs
in bug reports: improving cooperation between developers and users,”
in Proceedings of the Conference on Computer Supported Cooperative
Work (CSCW’10), 2010, pp. 301–310.

[26] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!” in
Proceedings of the 5th International Working Conference on Mining
Software Repositories (MSR’08), 2008, pp. 67–76.

[27] L. Breiman, “Random forests,” in Machine Learning, vol. 45, no. 1,
2001, pp. 5–32.

[28] H. He and E. A. Garcia, “Learning from imbalanced data,” vol. 21,
no. 9, 2009, pp. 1263–1284.

[29] C. Chen, A. Liaw, and L. Breiman, “Using random forest to learn imbal-

anced data,” in Technical Report666, Statistics Department, University
of California at Berkeley, 2004.

[30] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluat-
ing collaborative filtering recommender systems,” in ACM Transaction
on Information Systems, vol. 22, no. 49, 2004, pp. 5–53.

[31] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, “Classifying software
changes: Clean or buggy?” in IEEE Transaction on Software Engineer-
ing, vol. 34, 2008, pp. 181–196.

[32] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein,
“The missing links: bugs and bug-fix commits,” in Proceedings of the
18th International Symposium on Foundations of Software Engineering
(FSE’10), 2010, pp. 97–106.

[33] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in Proceedings of the 4th International Workshop on Mining
Software Repositories (MSR’07), 2005, pp. 1–5.

[34] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: recovering
links between bugs and changes,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of Software Engineering (ESEC/FSE’11), 2011, pp. 15–25.

